A385591 Numbers k such that both k^3 - 1 and k^3 + 1 are triprimes.
66, 132, 180, 228, 240, 288, 294, 336, 378, 420, 462, 600, 612, 660, 678, 702, 882, 918, 960, 1116, 1164, 1278, 1302, 1320, 1800, 2550, 2562, 3270, 3300, 3372, 3408, 3438, 3822, 3882, 3990, 4050, 4422, 4536, 4812, 5040, 5088, 5208, 5250, 5418, 5748, 5754, 5778, 5838, 6882, 6960, 7128, 7182, 7254
Offset: 1
Keywords
Examples
a(3) = 180 is a term because 180^3 - 1 = 5831999 = 31 * 179 * 1051 and 5832001 = 7 * 181 * 4603 are each products of 3 primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= k -> numtheory:-bigomega(k-1) + numtheory:-bigomega(k^2 + k + 1) = 3 and numtheory:-bigomega(k+1) + numtheory:-bigomega(k^2 - k + 1) = 3: select(filter, [seq(i,i=6 .. 10000, 6);
-
Mathematica
Select[Range[7500], PrimeOmega[#^3 - 1] == PrimeOmega[#^3 + 1] == 3 &] (* Amiram Eldar, Aug 10 2025 *)
Comments