A385592 Values of u in the quartets (2,u,v,w); i.e., values of u for solutions to 2*(2+u) = v*(v+w), in positive integers, with and v>m, sorted by nondecreasing values of u; see Comments.
4, 7, 8, 10, 10, 12, 13, 13, 14, 16, 16, 18, 18, 19, 19, 20, 22, 22, 22, 23, 24, 25, 25, 26, 26, 28, 28, 28, 28, 30, 31, 31, 32, 33, 33, 34, 34, 34, 34, 36, 37, 37, 38, 38, 38, 40, 40, 40, 40, 42, 42, 43, 43, 43, 43, 44, 46, 46, 46, 46, 47, 48, 48, 49, 49
Offset: 1
Keywords
Examples
First 30 quartets (2,u,v,w): m u v w 2 4 3 1 2 7 3 3 2 8 4 1 2 10 3 5 2 10 4 2 2 12 4 3 2 13 3 7 2 13 5 1 2 14 4 4 2 16 3 9 2 16 4 5 2 18 4 6 2 18 5 3 2 19 3 11 2 19 6 1 2 20 4 7 2 22 3 13 2 22 4 8 2 22 6 2 2 23 5 5 2 24 4 9 2 25 3 15 2 25 6 3 2 26 4 10 2 26 7 1 2 28 3 17 2 28 4 11 2 28 5 7 2 28 6 4 2 30 4 12 2(2+16) = 3(3+9) = 4(4+5), so (2,16,3,9) and (2,16,4,5) are rows.
Programs
-
Mathematica
Clear[solnsM]; solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching}, Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}]; rhs = GatherBy[rhs, First]; Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &]; If[Length[matching] > 0, Do[AppendTo[ans, Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i, Length[matching]}]], {u, max}]; ans = Flatten[ans, 1]; Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &, Sort[Select[DeleteDuplicates[ ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]]; TableForm[solns = solnsM[2, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}] aa = Flatten[solns] Map[#[[2]] &, solns] (* u, A385592 *) Map[#[[3]] &, solns] (* v, A385593 *) Map[#[[4]] &, solns] (* w, A385594 *) (* Peter J. C. Moses, Jun 15 2025 *)
Comments