This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385595 #8 Jul 11 2025 01:12:56 %S A385595 5,7,9,11,12,13,13,15,17,17,17,18,19,21,21,21,22,23,25,25,25,27,27,27, %T A385595 29,29,29,30,31,32,32,33,33,33,35,36,37,37,37,37,37,39,39,39,41,41,41, %U A385595 42,42,43,45,45,45,45,46,47,47,47,48,49,49,49,51,51,52 %N A385595 The u sequence in quartets (3,u,v,w); i.e., values of u for solutions to 3*(3+u) = v*(v+w), in positive integers, with u,v>=3 and u>=m, sorted by nondecreasing values of u; see Comments. %C A385595 A 4-tuple (m,u,v,w) is a quartet if m,u,v,w are positive integers such that m<=u, m<v, and m*(m+u) = v*(v+w), with the values of u in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m=3; for m=1, see A385182. %e A385595 First 30 quartets (3,u,v,w): %e A385595 m u v w %e A385595 3 5 4 2 %e A385595 3 7 5 1 %e A385595 3 9 4 5 %e A385595 3 11 6 1 %e A385595 3 12 5 4 %e A385595 3 13 4 8 %e A385595 3 13 6 2 %e A385595 3 15 6 3 %e A385595 3 17 4 11 %e A385595 3 17 5 7 %e A385595 3 17 6 4 %e A385595 3 18 7 2 %e A385595 3 19 6 5 %e A385595 3 21 4 14 %e A385595 3 21 4 14 %e A385595 3 21 6 6 %e A385595 3 21 8 1 %e A385595 3 22 5 10 %e A385595 3 23 6 7 %e A385595 3 25 4 17 %e A385595 3 25 6 8 %e A385595 3 25 7 5 %e A385595 3 27 5 13 %e A385595 3 27 6 9 %e A385595 3 27 9 1 %e A385595 3 29 4 20 %e A385595 3 29 6 10 %e A385595 3 29 8 4 %e A385595 3 30 9 2 %e A385595 3 31 6 11 %e A385595 3(3+13) = 4(4+8) = 6(6+2), so (3,13,4,8) and (3,13,6,2) are rows. %t A385595 Clear[solnsM]; %t A385595 solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching}, %t A385595 Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}]; %t A385595 rhs = GatherBy[rhs, First]; %t A385595 Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &]; %t A385595 If[Length[matching] > 0, Do[AppendTo[ans, %t A385595 Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i, %t A385595 Length[matching]}]], {u, max}]; %t A385595 ans = Flatten[ans, 1]; %t A385595 Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &, %t A385595 Sort[Select[DeleteDuplicates[ %t A385595 ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]]; %t A385595 TableForm[solns = solnsM[3, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}] %t A385595 aa = Flatten[solns] %t A385595 Map[#[[2]] &, solns] (* u, A385595 *) %t A385595 Map[#[[3]] &, solns] (* v, A385596 *) %t A385595 Map[#[[4]] &, solns] (* w, A385597 *) %t A385595 (*_Peter J.C.Moses_, Jun 15 2025*) %Y A385595 Cf. A385182, A385592, A385596, A385597. %K A385595 nonn %O A385595 1,1 %A A385595 _Clark Kimberling_, Jul 07 2025