This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385598 #5 Jul 12 2025 18:53:22 %S A385598 6,8,10,11,11,14,14,16,16,17,17,18,20,20,21,22,23,23,24,24,26,26,26, %T A385598 26,28,29,29,30,31,31,31,32,32,32,34,35,35,36,36,36,38,38,38,38,40,40, %U A385598 41,41,41,41,41,42,44,44,44,45,46,46,46,47,47,48,48,50,50 %N A385598 The u sequence in quartets (4,u,v,w); i.e., values of u for solutions to 4(4+u) = v(v+w), in positive integers, v>m, sorted by nondecreasing values of u; see Comments. %C A385598 A 4-tuple (m,u,v,w) is a quartet if m,u,v,w are positive integers such that m>v and and m*(m+u) = v*(v+w), with the values of u in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m=4; for m=1, see A385182. %e A385598 First 30 quartets (4,u,v,w): %e A385598 m u v w %e A385598 4 6 5 3 %e A385598 4 8 6 2 %e A385598 4 10 7 1 %e A385598 4 11 5 7 %e A385598 4 11 6 4 %e A385598 4 14 6 6 %e A385598 4 14 8 1 %e A385598 4 16 5 11 %e A385598 4 16 8 2 %e A385598 4 17 6 8 %e A385598 4 17 7 5 %e A385598 4 18 8 3 %e A385598 4 20 6 10 %e A385598 4 20 8 4 %e A385598 4 21 5 15 %e A385598 4 22 8 5 %e A385598 4 23 6 12 %e A385598 4 23 9 3 %e A385598 4 24 7 9 %e A385598 4 24 8 6 %e A385598 4 26 5 19 %e A385598 4 26 6 14 %e A385598 4 26 8 7 %e A385598 4 26 19 2 %e A385598 4 28 8 8 %e A385598 4 29 6 16 %e A385598 4 29 11 1 %e A385598 4 30 8 9 %e A385598 4 31 5 23 %e A385598 4 31 7 13 %e A385598 4(4+16) = 5(5+11) = 8(8+2), so (4,16,5,11) and (4,16,8,2) are rows. %t A385598 Clear[solnsM]; %t A385598 solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching}, %t A385598 Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}]; %t A385598 rhs = GatherBy[rhs, First]; %t A385598 Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &]; %t A385598 If[Length[matching] > 0, Do[AppendTo[ans, %t A385598 Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i, %t A385598 Length[matching]}]], {u, max}]; %t A385598 ans = Flatten[ans, 1]; %t A385598 Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &, %t A385598 Sort[Select[DeleteDuplicates[ %t A385598 ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]]; %t A385598 TableForm[solns = solnsM[4, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}] %t A385598 aa = Flatten[solns] %t A385598 Map[#[[2]] &, solns] (* u, A385598 *) %t A385598 Map[#[[3]] &, solns] (* v, A385599 *) %t A385598 Map[#[[4]] &, solns] (* w, A385600 *) %t A385598 (*_Peter J.C.Moses_, Jun 15 2025*) %Y A385598 Cf. A385182, A385592, A385599, A385600. %K A385598 nonn %O A385598 1,1 %A A385598 _Clark Kimberling_, Jul 10 2025