cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385458 Triangle read by rows: T(n,k) = exponent of the highest power of 2 dividing each Fibonomial coefficient fibonomial(n, k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 2, 3, 3, 0, 0, 0, 3, 2, 2, 3, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 1, 1, 0, 3, 3, 0, 1, 1, 0, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 3, 4, 4, 1, 4, 4, 3, 4, 4, 0
Offset: 0

Views

Author

David Radcliffe, Jun 29 2025

Keywords

Examples

			Triangle begins:
   n\k  0  1  2  3  4  5  6  7  8  9 10 11 12
   0:   0
   1:   0  0
   2:   0  0  0
   3:   0  1  1  0
   4:   0  0  1  0  0
   5:   0  0  0  0  0  0
   6:   0  3  3  2  3  3  0
   7:   0  0  3  2  2  3  0  0
   8:   0  0  0  2  2  2  0  0  0
   9:   0  1  1  0  3  3  0  1  1  0
  10:   0  0  1  0  0  3  0  0  1  0  0
  11:   0  0  0  0  0  0  0  0  0  0  0  0
  12:   0  4  4  3  4  4  1  4  4  3  4  4  0
		

Crossrefs

Programs

  • Julia
    function T_row(n)
        function T(n, k)
            c(a, b) = 2 * a + b ÷ 6 - count_ones(a)
            (nd, nm) = divrem(n, 3)
            (kd, km) = divrem(k, 3)
            !(nm < km || (kd & (nd - kd)) != 0) && return 0
            c(nd, n) - c(kd, k) - c((n - k) ÷ 3, n - k)
        end
        [T(n, k) for k in 0:n]
    end
    for n in 0:12 println(T_row(n)) end  # Peter Luschny, Jul 02 2025
  • Mathematica
    A385608[n_] := A385608[n] = 2*# + Quotient[n, 6] - DigitSum[#, 2] & [Quotient[n, 3]];
    A385458[n_, k_] := A385608[n] - A385608[k] - A385608[n-k];
    Table[A385458[n, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Jul 04 2025 *)
  • Python
    def b(n): return 2*(n//3) + n//6 - (n//3).bit_count()
    def T(n, k): return b(n) - b(k) - b(n-k) # David Radcliffe, Jul 01 2025
    

Formula

T(n, k) = A007814(A010048(n, k)).
T(n, k) = Sum_{i=1..k} (A337923(n+1-i) - A337923(i)).
T(n, k) = b(n) - b(k) - b(n - k), where b(n) = 2*floor(n/3) + floor(n/6) - A000120(floor(n/3)) = A385608(n) is the 2-adic valuation of the product of the first n Fibonacci numbers.
sign(T(n, k)) = 1 - A385456(n, k). - Peter Luschny, Jul 03 2025

A385609 Partial sums of A090740.

Original entry on oeis.org

1, 4, 5, 9, 10, 13, 14, 19, 20, 23, 24, 28, 29, 32, 33, 39, 40, 43, 44, 48, 49, 52, 53, 58, 59, 62, 63, 67, 68, 71, 72, 79, 80, 83, 84, 88, 89, 92, 93, 98, 99, 102, 103, 107, 108, 111, 112, 118, 119, 122, 123, 127, 128, 131, 132, 137, 138, 141, 142, 146, 147, 150, 151
Offset: 1

Views

Author

Paolo Xausa, Jul 04 2025

Keywords

Comments

Prepended with 0, a trisection of A385608.

Crossrefs

Programs

  • Mathematica
    A385609[n_] := 2*n + Quotient[n, 2] - DigitSum[n, 2];
    Array[A385609, 100] (* or *)
    Accumulate[IntegerExponent[3^Range[100] - 1, 2]]

Formula

a(n) = Sum_{k=1..n} A090740(k).
a(n) = 2*n + floor(n/2) - A000120(n).
a(n) = A385608(n*3).
Showing 1-2 of 2 results.