This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385631 #8 Jul 09 2025 16:36:07 %S A385631 120,720,2520,6720,15120,30240,55440,240240,360360 %N A385631 Products of five consecutive integers whose prime divisors are consecutive primes starting at 2. %e A385631 a(1) = 120 = 1*2*3*4*5 = 2^3 * 3^1 * 5^1. %e A385631 a(2) = 720 = 2*3*4*5*6 = 2^4 * 3^2 * 5^1. %e A385631 a(3) = 2520 = 3*4*5*6*7 = 2^3 * 3^2 * 5^1 * 7^1. %e A385631 a(4) = 6720 = 4*5*6*7*8 = 2^6 * 3^1 * 5^1 * 7^1. %e A385631 a(5) = 15120 = 5*6*7*8*9 = 2^4 * 3^3 * 5^1 * 7^1. %e A385631 a(6) = 30240 = 6*7*8*9*10 = 2^5 * 3^3 * 5^1 * 7^1. %e A385631 a(7) = 55440 = 7*8*9*10*11 = 2^4 * 3^2 * 5^1 * 7^1 * 11^1. %e A385631 a(8) = 240240 = 10*11*12*13*14 = 2^4 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1. %e A385631 a(9) = 360360 = 11*12*13*14*15 = 2^3 * 3^2 * 5^1 * 7^1 * 11^1 * 13^1. %t A385631 Select[(#*(# + 1)*(# + 2)*(# + 3)*(# + 4)) & /@ Range[12], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* _Amiram Eldar_, Jul 05 2025 *) %o A385631 (Python) %o A385631 from sympy import prime, primefactors %o A385631 def is_pi_complete(n): # Check for complete set of %o A385631 factors = primefactors(n) # prime factors %o A385631 return factors[-1] == prime(len(factors)) %o A385631 def aupto(limit): %o A385631 result = [] %o A385631 for i in range(1, limit+1): %o A385631 n = i * (i+1) * (i+2) * (i+3) * (i+4) %o A385631 if is_pi_complete(n): %o A385631 result.append(n) %o A385631 return result %o A385631 print(aupto(1000)) %Y A385631 Intersection of A052787 and A055932. %Y A385631 Cf. A217056, A385189, A385415. %K A385631 nonn,fini,full %O A385631 1,1 %A A385631 _Ken Clements_, Jul 05 2025