cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385631 Products of five consecutive integers whose prime divisors are consecutive primes starting at 2.

This page as a plain text file.
%I A385631 #8 Jul 09 2025 16:36:07
%S A385631 120,720,2520,6720,15120,30240,55440,240240,360360
%N A385631 Products of five consecutive integers whose prime divisors are consecutive primes starting at 2.
%e A385631 a(1) = 120 = 1*2*3*4*5 = 2^3 * 3^1 * 5^1.
%e A385631 a(2) = 720 = 2*3*4*5*6 = 2^4 * 3^2 * 5^1.
%e A385631 a(3) = 2520 = 3*4*5*6*7 = 2^3 * 3^2 * 5^1 * 7^1.
%e A385631 a(4) = 6720 = 4*5*6*7*8 = 2^6 * 3^1 * 5^1 * 7^1.
%e A385631 a(5) = 15120 = 5*6*7*8*9 = 2^4 * 3^3 * 5^1 * 7^1.
%e A385631 a(6) = 30240 = 6*7*8*9*10 = 2^5 * 3^3 * 5^1 * 7^1.
%e A385631 a(7) = 55440 = 7*8*9*10*11 = 2^4 * 3^2 * 5^1 * 7^1 * 11^1.
%e A385631 a(8) = 240240 = 10*11*12*13*14 = 2^4 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1.
%e A385631 a(9) = 360360 = 11*12*13*14*15 = 2^3 * 3^2 * 5^1 * 7^1 * 11^1 * 13^1.
%t A385631 Select[(#*(# + 1)*(# + 2)*(# + 3)*(# + 4)) & /@ Range[12], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* _Amiram Eldar_, Jul 05 2025 *)
%o A385631 (Python)
%o A385631 from sympy import prime, primefactors
%o A385631 def is_pi_complete(n): # Check for complete set of
%o A385631     factors = primefactors(n) # prime factors
%o A385631     return factors[-1] == prime(len(factors))
%o A385631 def aupto(limit):
%o A385631     result = []
%o A385631     for i in range(1, limit+1):
%o A385631         n = i * (i+1) * (i+2) * (i+3) * (i+4)
%o A385631         if is_pi_complete(n):
%o A385631             result.append(n)
%o A385631     return result
%o A385631 print(aupto(1000))
%Y A385631 Intersection of A052787 and A055932.
%Y A385631 Cf. A217056, A385189, A385415.
%K A385631 nonn,fini,full
%O A385631 1,1
%A A385631 _Ken Clements_, Jul 05 2025