This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385644 #45 Jul 16 2025 14:26:17 %S A385644 2,3,4,5,8,7,6,6,32,11,64,13,128,243,8,17,64,19,1024,2187,2048,23,216, %T A385644 10,8192,9,16384,29, %U A385644 14134776518227074636666380005943348126619871175004951664972849610340958208,31,10,177147,131072,78125,4096,37,524288,1594323,7776,41 %N A385644 Swap multiplication and exponentiation in the canonical prime factorization of n. %C A385644 In the canonical prime factorization of n larger than one, swap multiplication and exponentiation and calculate the result. %H A385644 Jens Ahlström, <a href="/A385644/b385644.txt">Table of n, a(n) for n = 2..65</a> %e A385644 a(6) = a(2 * 3) = 2^3 = 8, %e A385644 a(24) = a(2^3 * 3) = (2 * 3)^3 = 216, %e A385644 a(30) = a(2 * 3 * 5) = 2^3^5 = 2^243. %t A385644 f[{p_,e_}]:=p*e;a[n_]:=Module[{pp=f/@FactorInteger[n]},r=pp[[-1]];Do[r=pp[[Length[pp]-i]]^r,{i,1,Length[pp]-1}];r];Array[a,40,2] (* _James C. McMahon_, Jul 11 2025 *) %t A385644 A385644[n_] := Power @@ Times @@@ FactorInteger[n]; %t A385644 Array[A385644, 40, 2] (* _Paolo Xausa_, Jul 14 2025 *) %o A385644 (Python) %o A385644 from sympy import factorint %o A385644 from functools import reduce %o A385644 def rpow(a, b): %o A385644 return b**a %o A385644 def a(n): %o A385644 return reduce(rpow, [p*e for p, e in reversed(factorint(n).items())]) %o A385644 print([a(n) for n in range(2, 42)]) %Y A385644 Cf. A001414, A000026, A005361, A008474. %K A385644 nonn %O A385644 2,1 %A A385644 _Jens Ahlström_, Jul 06 2025