cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385645 a(n) is the number of distinct sums of distinct prime powers dividing n.

This page as a plain text file.
%I A385645 #8 Jul 15 2025 17:04:53
%S A385645 1,3,3,7,3,6,3,15,7,7,3,10,3,7,7,31,3,13,3,12,7,7,3,18,7,7,15,14,3,11,
%T A385645 3,63,7,7,7,19,3,7,7,20,3,13,3,15,14,7,3,34,7,15,7,15,3,27,7,22,7,7,3,
%U A385645 15,3,7,14,127,7,13,3,15,7,13,3,27,3,7,15,15,7,13
%N A385645 a(n) is the number of distinct sums of distinct prime powers dividing n.
%H A385645 Felix Huber, <a href="/A385645/b385645.txt">Table of n, a(n) for n = 1..10000</a>
%F A385645 a(p) = 3 for prime p.
%F A385645 a(p^k) = A119347(p^k) for prime p and nonnegative integer k.
%F A385645 A385646(n) < a(n) <= A119347(n).
%e A385645 The a(4) = 7 distinct sums of distinct prime powers dividing 4 are 1, 2, 4, 1 + 2, 1 + 4, 2 + 4 and 1 + 2 + 4.
%p A385645 A385645:=proc(n)
%p A385645     local b,k,l,i,j;
%p A385645     l:=[1,seq(seq(i[1]^j,j=1..i[2]),i in ifactors(n)[2])]:
%p A385645     b:=proc(m,i)
%p A385645         option remember;
%p A385645         `if`(m=0,1,`if`(i<1,0,b(m,i-1)+`if`(l[i]>m,0,b(m-l[i],i-1))))
%p A385645     end;
%p A385645     return nops(select(x->x>0,[seq(b(k,nops(l)),k=1..add(l))]))
%p A385645     end:
%p A385645 seq(A385645(n),n=1..78);
%Y A385645 Cf. A000040, A000961, A119347, A385646.
%K A385645 nonn,easy
%O A385645 1,2
%A A385645 _Felix Huber_, Jul 11 2025