cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385646 a(n) is the number of distinct sums of distinct prime factors of n.

This page as a plain text file.
%I A385646 #5 Jul 15 2025 16:46:04
%S A385646 0,1,1,1,1,3,1,1,1,3,1,3,1,3,3,1,1,3,1,3,3,3,1,3,1,3,1,3,1,6,1,1,3,3,
%T A385646 3,3,1,3,3,3,1,7,1,3,3,3,1,3,1,3,3,3,1,3,3,3,3,3,1,6,1,3,3,1,3,7,1,3,
%U A385646 3,6,1,3,1,3,3,3,3,7,1,3,1,3,1,7,3,3,3,3
%N A385646 a(n) is the number of distinct sums of distinct prime factors of n.
%H A385646 Felix Huber, <a href="/A385646/b385646.txt">Table of n, a(n) for n = 1..10000</a>
%F A385646 a(n) < A385646(n).
%e A385646 The a(18) = 3 distinct sums of distinct prime factors of 18 = 2*3^2 are 2, 3 and 2 + 3.
%e A385646 The a(42) = 7 distinct sums of distinct prime factors of 42 = 2*3*7 are 2, 3, 7, 2 + 3 = 5, 2 + 7 = 9, 3 + 7 = 10, 2 + 3 + 7 = 12.
%e A385646 The a(30) = 6 distinct sums of distinct prime factors of 30 = 2*3*5 are 2, 3, 2 + 3 = 5, 2 + 5 = 7, 3 + 5 = 8, 2 + 3 + 5 = 10.
%p A385646 A385646:=proc(n)
%p A385646     local b,k,l,i,j;
%p A385646     l:=[seq(i[1],i in ifactors(n)[2])]:
%p A385646     b:=proc(m,i)
%p A385646         option remember;
%p A385646         `if`(m=0,1,`if`(i<1,0,b(m,i-1)+`if`(l[i]>m,0,b(m-l[i],i-1))))
%p A385646     end;
%p A385646     return nops(select(x->x>0,[seq(b(k,nops(l)),k=1..add(l))]))
%p A385646     end:
%p A385646 seq(A385646(n),n=1..85);
%Y A385646 Cf. A000040, A001221, A119347, A385645.
%K A385646 nonn,easy
%O A385646 1,6
%A A385646 _Felix Huber_, Jul 11 2025