cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385652 Maximum frequency of gpf(k) for 2 <= k <= n, where gpf(k) = A006530(k) is the greatest prime factor of k.

This page as a plain text file.
%I A385652 #12 Jul 13 2025 19:21:22
%S A385652 1,1,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7,7,7,7,7,7,7,7,7,
%T A385652 8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,
%U A385652 10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12
%N A385652 Maximum frequency of gpf(k) for 2 <= k <= n, where gpf(k) = A006530(k) is the greatest prime factor of k.
%C A385652 The prime p is popular on the interval [2,n] if it is the greatest prime factor of a(n) numbers in that interval; see A385503.
%H A385652 Pontus von Brömssen, <a href="/A385652/b385652.txt">Table of n, a(n) for n = 2..10000</a>
%F A385652 a(n) = max_{k=2..n} A078899(k).
%e A385652      |     | cumulative frequencies for gpf's |
%e A385652    n | gpf |    2  3  5  7 11 13 17 19 23     | a(n)
%e A385652   ---+-----+----------------------------------+-----
%e A385652    2 |   2 |    1  0  0  0  0  0  0  0  0     |  1
%e A385652    3 |   3 |    1  1  0  0  0  0  0  0  0     |  1
%e A385652    4 |   2 |    2  1  0  0  0  0  0  0  0     |  2
%e A385652    5 |   5 |    2  1  1  0  0  0  0  0  0     |  2
%e A385652    6 |   3 |    2  2  1  0  0  0  0  0  0     |  2
%e A385652    7 |   7 |    2  2  1  1  0  0  0  0  0     |  2
%e A385652    8 |   2 |    3  2  1  1  0  0  0  0  0     |  3
%e A385652    9 |   3 |    3  3  1  1  0  0  0  0  0     |  3
%e A385652   10 |   5 |    3  3  2  1  0  0  0  0  0     |  3
%e A385652   11 |  11 |    3  3  2  1  1  0  0  0  0     |  3
%e A385652   12 |   3 |    3  4  2  1  1  0  0  0  0     |  4
%e A385652   13 |  13 |    3  4  2  1  1  1  0  0  0     |  4
%e A385652   14 |   7 |    3  4  2  2  1  1  0  0  0     |  4
%e A385652   15 |   5 |    3  4  3  2  1  1  0  0  0     |  4
%e A385652   16 |   2 |    4  4  3  2  1  1  0  0  0     |  4
%e A385652   17 |  17 |    4  4  3  2  1  1  1  0  0     |  4
%e A385652   18 |   3 |    4  5  3  2  1  1  1  0  0     |  5
%e A385652   19 |  19 |    4  5  3  2  1  1  1  1  0     |  5
%e A385652   20 |   5 |    4  5  4  2  1  1  1  1  0     |  5
%e A385652   21 |   7 |    4  5  4  3  1  1  1  1  0     |  5
%e A385652   22 |  11 |    4  5  4  3  2  1  1  1  0     |  5
%e A385652   23 |  23 |    4  5  4  3  2  1  1  1  1     |  5
%e A385652   24 |   3 |    4  6  4  3  2  1  1  1  1     |  6
%o A385652 (Python)
%o A385652 from collections import Counter
%o A385652 from itertools import count
%o A385652 from sympy import factorint
%o A385652 def A385652_generator():
%o A385652     c = Counter()
%o A385652     M = 0
%o A385652     for n in count(2):
%o A385652         gpf = max(factorint(n))
%o A385652         c[gpf] += 1
%o A385652         if c[gpf] > M: M += 1
%o A385652         yield M
%o A385652 (PARI) gpf(n) = if (n==1,1, vecmax(factor(n)[,1])); \\ A006530
%o A385652 a(n) = my(v=vector(n, k, gpf(k)), s=Set(v)); vecmax(apply(x->#x, vector(#s, i, select(x->(x==s[i]), v)))); \\ _Michel Marcus_, Jul 06 2025
%Y A385652 Cf. A006530, A078899, A385503, A385653, A385654.
%K A385652 nonn
%O A385652 2,3
%A A385652 _Pontus von Brömssen_, Jul 06 2025