cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385659 Decimal expansion of log_10(1 + 1/3).

This page as a plain text file.
%I A385659 #24 Jul 13 2025 11:08:48
%S A385659 1,2,4,9,3,8,7,3,6,6,0,8,2,9,9,9,5,3,1,3,2,4,4,9,8,8,6,1,9,3,8,7,0,7,
%T A385659 4,4,3,3,6,2,5,0,8,9,8,7,3,3,5,2,1,2,1,7,7,9,0,9,8,9,2,8,1,9,4,8,9,8,
%U A385659 7,2,2,5,7,6,5,1,8,7,8,9,5,9,3,0,8,8,6
%N A385659 Decimal expansion of log_10(1 + 1/3).
%C A385659 Probability that 3 occurs as the first significant digit in data collections according to Benford's law (see A007524).
%H A385659 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BenfordsLaw.html">Benford's Law</a>.
%H A385659 Wikipedia, <a href="https://en.wikipedia.org/wiki/Benford%27s_law">Benford's law</a>.
%F A385659 Equals A114493 - A114490. - _R. J. Mathar_, Jul 13 2025
%e A385659 0.12493873660829995313244988619...
%t A385659 RealDigits[Log[10, 4/3], 10, 90][[1]]
%Y A385659 Benford's law for digit: A007524 (1), A104140 (9), A154203 (5), A154580 (2).
%K A385659 nonn,cons,easy
%O A385659 0,2
%A A385659 _Marco Ripà_, Jul 06 2025
%E A385659 a(16) to a(86) corrected by _Marco Ripà_, Jul 12 2025