cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385661 Lexicographically earliest sequence of distinct positive integers that can be partitioned into runs of pairwise coprime integers, the n-th such run having a(n) terms.

This page as a plain text file.
%I A385661 #14 Aug 15 2025 09:11:00
%S A385661 1,2,3,4,5,7,6,11,13,17,8,9,19,23,25,10,21,29,31,37,41,43,12,35,47,53,
%T A385661 59,61,14,15,67,71,73,79,83,89,97,101,103,16,27,49,55,107,109,113,127,
%U A385661 131,137,139,149,151,18,65,77,157,163,167,173,179,181,191,193,197,199,211,223,227,229
%N A385661 Lexicographically earliest sequence of distinct positive integers that can be partitioned into runs of pairwise coprime integers, the n-th such run having a(n) terms.
%C A385661 This sequence is a permutation of the positive integers as each run starts with the least integer not yet in the sequence.
%C A385661 The prime numbers appear in natural order.
%H A385661 Rémy Sigrist, <a href="/A385661/b385661.txt">Table of n, a(n) for n = 1..10000</a>
%H A385661 Rémy Sigrist, <a href="/A385661/a385661.gp.txt">PARI program</a>
%H A385661 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A385661 T(n, 1) = 2*n-2 for any n > 1.
%e A385661 The first terms and runs are:
%e A385661   n   a(n)  n-th run
%e A385661   --  ----  -----------------------------------------------------------
%e A385661    0     1  1
%e A385661    1     2  2, 3
%e A385661    3     3  4, 5, 7
%e A385661    6     4  6, 11, 13, 17
%e A385661   10     5  8, 9, 19, 23, 25
%e A385661   15     7  10, 21, 29, 31, 37, 41, 43
%e A385661   22     6  12, 35, 47, 53, 59, 61
%e A385661   28    11  14, 15, 67, 71, 73, 79, 83, 89, 97, 101, 103
%e A385661   39    13  16, 27, 49, 55, 107, 109, 113, 127, 131, 137, 139, 149, 151
%o A385661 (PARI) \\ See Links section.
%Y A385661 See A386932 for a similar sequence.
%Y A385661 Cf. A076034, A385735 (inverse).
%K A385661 nonn,tabf
%O A385661 1,2
%A A385661 _Rémy Sigrist_, Aug 09 2025