cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385666 Triangle read by rows: T(n,k) is the number of 2n-bead balanced binary necklaces with period length 2n/k.

This page as a plain text file.
%I A385666 #19 Aug 27 2025 22:03:23
%S A385666 1,1,1,3,0,1,8,1,0,1,25,0,0,0,1,75,3,1,0,0,1,245,0,0,0,0,0,1,800,8,0,
%T A385666 1,0,0,0,1,2700,0,3,0,0,0,0,0,1,9225,25,0,0,1,0,0,0,0,1,32065,0,0,0,0,
%U A385666 0,0,0,0,0,1,112632,75,8,3,0,1,0,0,0,0,0,1,400023
%N A385666 Triangle read by rows: T(n,k) is the number of 2n-bead balanced binary necklaces with period length 2n/k.
%C A385666 There are A003239(n) balanced binary necklaces of length 2n. (Central numbers of A047996.)
%C A385666 T(n,k) is the number of those that can be rotated into themselves in k different ways (at least 1 for the trivial rotation).
%C A385666 A022553(n) necklaces (corresponding to Lyndon words) have only the trivial rotation.
%C A385666 All columns have the same positive entries, each preceded by k-1 zeros.
%C A385666 Compare triangle A385665, which counts only self-complementary balanced binary necklaces.
%H A385666 Tilman Piesk, <a href="/A385666/b385666.txt">Rows 1..32, flattened</a>
%H A385666 Tilman Piesk, <a href="/A385666/a385666.txt">Triangle T(n,k)*2*n/k with row sums 2n choose n</a>
%H A385666 Tilman Piesk, <a href="/A385666/a385666_2.txt">List of imprimitive necklaces for n=1...15</a>
%H A385666 Tilman Piesk, <a href="/A385666/a385666_3.txt">List of primitive necklaces for n=1...8</a>
%F A385666 T(n,k) = A022553(n/k) iff n divisible by k, otherwise 0.
%e A385666 Triangle begins:
%e A385666          k     1   2  3  4  5  6  7  8  9 10 11 12 13 14 15 16    A003239(n)
%e A385666   n
%e A385666   1            1   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .            1
%e A385666   2            1   1  .  .  .  .  .  .  .  .  .  .  .  .  .  .            2
%e A385666   3            3   .  1  .  .  .  .  .  .  .  .  .  .  .  .  .            4
%e A385666   4            8   1  .  1  .  .  .  .  .  .  .  .  .  .  .  .           10
%e A385666   5           25   .  .  .  1  .  .  .  .  .  .  .  .  .  .  .           26
%e A385666   6           75   3  1  .  .  1  .  .  .  .  .  .  .  .  .  .           80
%e A385666   7          245   .  .  .  .  .  1  .  .  .  .  .  .  .  .  .          246
%e A385666   8          800   8  .  1  .  .  .  1  .  .  .  .  .  .  .  .          810
%e A385666   9         2700   .  3  .  .  .  .  .  1  .  .  .  .  .  .  .         2704
%e A385666  10         9225  25  .  .  1  .  .  .  .  1  .  .  .  .  .  .         9252
%e A385666  11        32065   .  .  .  .  .  .  .  .  .  1  .  .  .  .  .        32066
%e A385666  12       112632  75  8  3  .  1  .  .  .  .  .  1  .  .  .  .       112720
%e A385666  13       400023   .  .  .  .  .  .  .  .  .  .  .  1  .  .  .       400024
%e A385666  14      1432613 245  .  .  .  .  1  .  .  .  .  .  .  1  .  .      1432860
%e A385666  15      5170575   . 25  .  3  .  .  .  .  .  .  .  .  .  1  .      5170604
%e A385666  16     18783360 800  .  8  .  .  .  1  .  .  .  .  .  .  .  1     18784170
%e A385666 Examples for n=4 with necklaces of length 8:
%e A385666 T(4, 1) = 8 necklaces have k=1 rotation, i.e. rotating 0 places:
%e A385666  00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101, 00110101
%e A385666 T(4, 2) = 1 necklace has k=2 rotations:
%e A385666  00110011 can be rotated onto itself by rotating 0 or 4 places.
%e A385666 T(4, 4) = 1 necklace has k=4 rotations:
%e A385666  01010101 can be rotated onto itself by rotating 0, 2, 4 or 6 places.
%Y A385666 Cf. A022553, A003239, A385665.
%K A385666 nonn,tabl,changed
%O A385666 1,4
%A A385666 _Tilman Piesk_, Jul 16 2025