This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385672 #13 Aug 05 2025 09:45:01 %S A385672 1,4,12,2,40,8,4,124,42,16,6,2,416,160,92,28,16,4,4,1348,678,362,174, %T A385672 88,34,22,8,6,2,4624,2548,1624,756,460,200,156,56,40,20,12,4,4,15632, %U A385672 10062,6336,3586,2110,1106,742,388,278,152,82,46,34,14,8,6,2 %N A385672 Irregular triangle read by rows: T(n, k) is the number of n-step walks on the square lattice having algebraic area k; n >= 0, 0 <= k <= floor(n^2/4). %C A385672 Rows can be extended to negative k with T(n, -k) = T(n, k). Sums of such extended rows give 4^n. %C A385672 The algebraic area is Integral y dx over the walk, which equals (Sum_{steps right} y) - (Sum_{steps left} y). %F A385672 It appears that T(2*n, n^2 - k) = 2 * A029552(k) for k < n and T(2*n+1, n^2+n - k) = 4 * A098613(k) for k < n. %e A385672 The triangle begins: %e A385672 1 %e A385672 4 %e A385672 12, 2 %e A385672 40, 8, 4 %e A385672 124, 42, 16, 6, 2 %e A385672 416, 160, 92, 28, 16, 4, 4 %e A385672 1348, 678, 362, 174, 88, 34, 22, 8, 6, 2 %e A385672 ... %e A385672 T(3, 1) = 8: RUR (right, up, right), LUR, RDL, LDL, URU, URD, DLU, DLD. %o A385672 (Python) %o A385672 d = [{((0, 0), 0): 1}] %o A385672 for _ in range(10): %o A385672 nd = {} %o A385672 for key, nw in d[-1].items(): %o A385672 pos, ar = key %o A385672 x, y = pos %o A385672 for key in [ %o A385672 ((x+1, y), ar + y), %o A385672 ((x-1, y), ar - y), %o A385672 ((x, y+1), ar), %o A385672 ((x, y-1), ar) %o A385672 ]: %o A385672 if key in nd: %o A385672 nd[key] += nw %o A385672 else: %o A385672 nd[key] = nw %o A385672 d.append(nd) %o A385672 t = [] %o A385672 for nd in d: %o A385672 a = [0] * (max(ar for _, ar in nd) + 1) %o A385672 for key, nw in nd.items(): %o A385672 _, ar = key %o A385672 if ar >= 0: %o A385672 a[ar] += nw %o A385672 t.append(a) %o A385672 print(t) %Y A385672 Row lengths are A033638 = A002620 + 1. %Y A385672 A352838 is an analog that gives the number of closed walks. %Y A385672 Cf. A029552, A098613. %K A385672 nonn,tabf %O A385672 0,2 %A A385672 _Andrei Zabolotskii_, Aug 04 2025