This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385685 #17 Jul 12 2025 08:34:13 %S A385685 1,1,2,1,1,2,1,1,2,3,1,1,2,1,1,2,1,1,2,3,1,1,2,1,1,2,1,1,2,3,1,1,2,1, %T A385685 1,2,1,1,2,3,4,1,1,2,1,1,2,1,1,2,3,1,1,2,1,1,2,1,1,2,3,1,1,2,1,1,2,1, %U A385685 1,2,3,1,1,2,1,1,2,1,1,2,3,4,1,1,2,1,1,2,1,1,2,3 %N A385685 Sequence where k is appended after every k! occurrences of 1, with multiple values following a 1 listed in order. %C A385685 The frequencies of the terms follow the Poisson distribution with parameter value 1. %C A385685 The geometric mean approaches A385686 in the limit. In general, for parameter value p it approaches Product_{k>=2} k^(((p^(k-1))*((e-1)^(-p)))/k!). %H A385685 Jwalin Bhatt, <a href="/A385685/b385685.txt">Table of n, a(n) for n = 0..9999</a> %H A385685 Wikipedia, <a href="https://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a> %e A385685 Every 1 is followed by a 1 because 1! = 1, %e A385685 after every (2!=2) ones we see a 2, %e A385685 after every (3!=6) ones we see a 3 and so on. %t A385685 A385685[n_] := Module[{N1 = 0,NR= 1, result = {},i=1}, While[Length[result] < n,N1++;AppendTo[result, 1]; Do[If[Mod[N1, Factorial[k]] == 0, AppendTo[result, k];f[k == NR + 1, NR++]],{k, 2, NR + 1}];If[Length[result] > n, result = Take[result, n]]];result];A385685[92] (* _James C. McMahon_, Jul 11 2025 *) %o A385685 (Python) %o A385685 from itertools import islice %o A385685 from math import factorial %o A385685 def poisson_distribution_generator(): %o A385685 num_ones, num_reached = 0, 1 %o A385685 while num_ones := num_ones+1: %o A385685 yield 1 %o A385685 for num in range(2, num_reached+2): %o A385685 if num_ones % factorial(num) == 0: %o A385685 yield num %o A385685 num_reached += num == num_reached+1 %o A385685 A385685 = list(islice(poisson_distribution_generator(), 120)) %Y A385685 Cf. A000142 (n!), A382093, A385686. %K A385685 nonn %O A385685 0,3 %A A385685 _Jwalin Bhatt_, Jul 06 2025