This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385697 #8 Jul 22 2025 19:00:35 %S A385697 1,2,4,11,32,120,498,2425,13107,79002,526502,3918731,33238798, %T A385697 334851298,4273597722 %N A385697 Number of unlabeled simple graphs on n vertices with no induced subgraphs isomorphic to a P5 or complement of a P5, where P5 = path on 5 vertices. %C A385697 These numbers include both connected and disconnected graphs. %o A385697 (Sage) %o A385697 def has_induced_P5(g): %o A385697 n = g.order() %o A385697 if n < 5: %o A385697 return False %o A385697 from itertools import combinations %o A385697 for vertices in combinations(range(n), 5): %o A385697 subgraph = g.subgraph(vertices) %o A385697 if subgraph.is_isomorphic(graphs.PathGraph(5)): %o A385697 return True %o A385697 return False %o A385697 for n in range(3, 11): %o A385697 count = 0 %o A385697 max_edges = n * (n - 1) // 2 %o A385697 for g in graphs.nauty_geng(f"{n}"): %o A385697 edge_count = g.size() %o A385697 if edge_count < max_edges / 2: %o A385697 if not has_induced_P5(g) and not has_induced_P5(g.complement()): %o A385697 count += 2 %o A385697 elif edge_count == max_edges / 2: %o A385697 if not has_induced_P5(g) and not has_induced_P5(g.complement()): %o A385697 count += 1 %o A385697 print(f"n = {n}: {count} graphs with no P5 in G or co-G") %Y A385697 Cf. A000088. %Y A385697 Euler transform of A079564. %K A385697 nonn,more %O A385697 1,2 %A A385697 _Jim Nastos_, Jul 07 2025 %E A385697 a(9)-a(15) from _Sean A. Irvine_, Jul 22 2025