cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385704 Complement of A184535.

This page as a plain text file.
%I A385704 #11 Aug 07 2025 04:59:08
%S A385704 3,4,6,7,8,10,11,12,13,14,16,17,18,19,20,22,23,24,25,26,27,28,30,31,
%T A385704 32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,
%U A385704 57,58,59,61,62,63,64,65,66,67,68,69,70,71,73,74,75,76,77,78
%N A385704 Complement of A184535.
%C A385704 Numbers > 1 not of the form floor(3*k^2/5).
%F A385704 a(n) = n+m+1 if n+m>=floor(3*(m+1)^2/5) and a(n) = n+m otherwise where m = floor(sqrt(5*n/3)).
%t A385704 m[n_]:=Floor[Sqrt[5n/3]];a[n_]:=If[n+m[n]>=Floor[3(m[n]+1)^2/5],n+m[n]+1,n+m[n]];Array[a,67] (* _James C. McMahon_, Aug 06 2025 *)
%o A385704 (Python)
%o A385704 from math import isqrt
%o A385704 def A385704(n): return n+(m:=isqrt(5*n//3))+(n+m>=3*(m+1)**2//5)
%Y A385704 Cf. A184535.
%K A385704 nonn,easy
%O A385704 1,1
%A A385704 _Chai Wah Wu_, Aug 04 2025