This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385720 #20 Jul 14 2025 04:21:17 %S A385720 1,5,6,8,10,13,22,37,45,46,58,61,62,69,73,74,77,82,89,106,114,117,126, %T A385720 146,149,150,154,157,166,167,178,186,193,197,198,206,221,226,233,237, %U A385720 258,261,262,263,266,277,278,279,280,290,293,306,309,311,312,313 %N A385720 Numbers k >= 1 such that k/A000005(k) + (k+1)/A000005(k+1) is an integer. %C A385720 k/A000005(k) + (k+1)/A000005(k+1) = (3*k + 1)/4 for k >= 5 from A256072. %C A385720 k/A000005(k) + (k+1)/A000005(k+1) = (3*k + 2)/4 for k >= 6 from A077065. %C A385720 k/A000005(k) + (k+1)/A000005(k+1) =< (3*k + 2)/4 for k >= 5. %e A385720 For k = 6: 6/A000005(6) + 7/A000005(7) = 6/4 + 7/2 = 5, thus k = 6 is a term. %t A385720 Position[Plus @@@ Partition[Table[n/DivisorSigma[0, n], {n, 1, 320}], 2, 1], _?IntegerQ] // Flatten (* _Amiram Eldar_, Jul 08 2025 *) %o A385720 (PARI) isok(k) = denominator(k/numdiv(k) + (k+1)/numdiv(k+1)) == 1; \\ _Michel Marcus_, Jul 08 2025 %o A385720 (Python) %o A385720 from itertools import count, islice %o A385720 from sympy import divisor_count %o A385720 def A385720_gen(startvalue=1): # generator of terms >= startvalue %o A385720 m = max(startvalue,1) %o A385720 a, b = divisor_count(m), divisor_count(m+1) %o A385720 for k in count(m): %o A385720 if not (k*b+(k+1)*a)%(a*b): %o A385720 yield k %o A385720 a, b = b, divisor_count(k+2) %o A385720 A385720_list = list(islice(A385720_gen(),30)) # _Chai Wah Wu_, Jul 13 2025 %Y A385720 Cf. A000005, A005384, A005385, A077065, A256072. %K A385720 nonn %O A385720 1,2 %A A385720 _Ctibor O. Zizka_, Jul 07 2025