This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385727 #22 Jul 21 2025 13:14:55 %S A385727 0,2,3,6,9,13,17,23,26,29,41,53,53,73,123,159,157,251,332,491,587,691, %T A385727 943,1187,1187,1804,2923,2348,6241,3541,3541,7082,7082,14164,10623, %U A385727 14164,28328,56656,98533 %N A385727 Minimum base in which the least number with absolute multiplicative persistence n achieves such persistence. %C A385727 a(n) is the minimum base in which the n-th term in A330152 achieves its absolute persistence. %H A385727 Brendan Gimby, <a href="https://github.com/bgimby/cudf-persistence-tools/tree/main">Tools for finding numbers with large persistence</a>. %H A385727 Tim Lamont-Smith, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Lamont/lamont5.html">Multiplicative Persistence and Absolute Multiplicative Persistence</a>, J. Int. Seq., Vol. 24 (2021), Article 21.6.7. %e A385727 23 when represented in base 6 goes 35 -> 23 -> 10 -> 1, has absolute persistence of 3, and has smaller persistence in all smaller bases, so a(3) = 6 (Cf. A064867). %e A385727 52 when represented in base 9 goes 57 -> 38 -> 26 -> 13 -> 3, has absolute persistence of 4, and has smaller persistence in all smaller bases, so a(4) = 9 (Cf. A064868). %o A385727 (Python) %o A385727 from math import prod %o A385727 from sympy.ntheory.digits import digits %o A385727 def mp(n, b): # multiplicative persistence of n in base b [from _Michael S. Branicky_ in A330152] %o A385727 c = 0 %o A385727 while n >= b: %o A385727 n, c = prod(digits(n, b)[1:]), c+1 %o A385727 return c %o A385727 def a(n): %o A385727 k = 0 %o A385727 while True: %o A385727 if b := next((b for b in range(2, max(3, k)) if mp(k, b)==n), 0): return b %o A385727 k += 1 %o A385727 print([a(n) for n in range(11)]) %Y A385727 Cf. A003001, A245760, A330152. %K A385727 nonn,more %O A385727 0,2 %A A385727 _Brendan Gimby_, Jul 08 2025 %E A385727 a(36)-a(38) from _Jinyuan Wang_, Jul 13 2025