This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385732 #15 Jul 08 2025 22:27:13 %S A385732 1,1,1,1,3,1,1,4,4,1,1,7,28,7,1,1,11,77,77,11,1,1,18,66,231,66,18,1,1, %T A385732 29,174,957,957,174,29,1,1,47,1363,4089,44979,4089,1363,47,1,1,76, %U A385732 3572,25897,155382,155382,25897,3572,76,1,1,123,3116,36613,1061777,19111986,1061777,36613,3116,123,1 %N A385732 Triangle read by rows: the numerators of the Lucas triangle. %H A385732 Donald E. Knuth and Herbert S. Wilf, <a href="https://www2.math.upenn.edu/~wilf/website/dm36.pdf">The Power of a Prime that Divides a Generalized Binomial Coefficient</a>, J. Reine Angew. Math. 396 (1989), 212-219. %H A385732 Edouard Lucas, <a href="https://www.jstor.org/stable/2369308">Théorie des Fonctions Numériques Simplement Périodiques</a>, American Journal of Mathematics 1 (1878), 184-240, §9. %H A385732 Diana L. Wells, <a href="https://www.fq.math.ca/Scanned/32-2/wells.pdf">The Fibonacci and Lucas triangles modulo 2</a>, Fibonacci Quart. 32, no. 2 (1994), p. 112. %F A385732 LT(n, k) = Product_{j=k+1..n} i^j*cosh(c*j) / Product_{j=1..n-k} i^j*cosh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit. If in this formula cosh is substituted by sinh one gets the Fibonomial triangle A010048. %F A385732 T(n, k) = numerator(LT(n, k)). %e A385732 Triangle begins: %e A385732 [0] 1; %e A385732 [1] 1, 1; %e A385732 [2] 1, 3, 1; %e A385732 [3] 1, 4, 4, 1; %e A385732 [4] 1, 7, 28, 7, 1; %e A385732 [5] 1, 11, 77, 77, 11, 1; %e A385732 [6] 1, 18, 66, 231, 66, 18, 1; %e A385732 [7] 1, 29, 174, 957, 957, 174, 29, 1; %e A385732 [8] 1, 47, 1363, 4089, 44979, 4089, 1363, 47, 1; %e A385732 [9] 1, 76, 3572, 25897, 155382, 155382, 25897, 3572, 76, 1; %p A385732 c := arccsch(2) - I*Pi/2: %p A385732 LT := (n, k) -> mul(I^j*cosh(c*j), j = k + 1..n) / mul(I^j*cosh(c*j), j = 1..n - k): %p A385732 T := (n, k) -> numer(simplify(LT(n, k))): seq(seq(T(n, k), k = 0..n), n = 0..10); %t A385732 T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Cosh[c j], {j, k + 1, n}] / Product[I^j Cosh[c j], {j, 1, n - k}]]; %t A385732 Table[Simplify[T[n, k]], {n, 0, 8}, {k, 0, n}] // Flatten // Numerator %Y A385732 Cf. A385733 (denominators), A070825 (Lucanorial), A003266 (Fibonorial), A010048 (Fibonomial). %K A385732 nonn,tabl,frac %O A385732 0,5 %A A385732 _Peter Luschny_, Jul 08 2025