This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385733 #10 Jul 14 2025 07:11:40 %S A385733 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,3,3,1,1,1,1,1,2,1,1,1,1,1,1,2,2,1, %T A385733 1,1,1,1,3,2,14,2,3,1,1,1,1,3,3,7,7,3,3,1,1,1,1,1,1,7,77,7,1,1,1,1,1, %U A385733 1,1,1,7,77,77,7,1,1,1,1,1,1,3,2,1,11,99,11,1,2,3,1,1 %N A385733 Triangle read by rows: the denominators of the Lucas triangle. %H A385733 Diana L. Wells, <a href="https://www.fq.math.ca/Scanned/32-2/wells.pdf">The Fibonacci and Lucas triangles modulo 2</a>, Fibonacci Quart. 32, no. 2 (1994), p. 112. %F A385733 LT(n, k) = Product_{j=k+1..n} i^j*cosh(c*j) / Product_{j=1..n-k} i^j*cosh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit. %F A385733 T(n, k) = denominator(LT(n, k)). %e A385733 Triangle begins: %e A385733 [0] 1; %e A385733 [1] 1, 1; %e A385733 [2] 1, 1, 1; %e A385733 [3] 1, 1, 1, 1; %e A385733 [4] 1, 1, 3, 1, 1; %e A385733 [5] 1, 1, 3, 3, 1, 1; %e A385733 [6] 1, 1, 1, 2, 1, 1, 1; %e A385733 [7] 1, 1, 1, 2, 2, 1, 1, 1; %e A385733 [8] 1, 1, 3, 2, 14, 2, 3, 1, 1; %e A385733 [9] 1, 1, 3, 3, 7, 7, 3, 3, 1, 1; %p A385733 c := arccsch(2) - I*Pi/2: %p A385733 LT := (n, k) -> mul(I^j*cosh(c*j), j = k + 1..n) / mul(I^j*cosh(c*j), j = 1..n - k): %p A385733 T := (n, k) -> denom(simplify(LT(n, k))): seq(seq(T(n, k), k = 0..n), n = 0..12); %t A385733 T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Cosh[c j], {j, k + 1, n}] / Product[I^j Cosh[c j], {j, 1, n - k}]]; %t A385733 Table[Simplify[T[n, k]], {n, 0, 8}, {k, 0, n}] // Flatten // Denominator %Y A385733 Cf. A385732 (numerators), A070825 (Lucanorial), A003266 (Fibonorial), A010048 (Fibonomial). %K A385733 nonn,tabl,frac %O A385733 0,13 %A A385733 _Peter Luschny_, Jul 08 2025