cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385737 Perimeters of nondegenerate triangles with integer areas, whose side lengths are triangular numbers.

This page as a plain text file.
%I A385737 #7 Jul 21 2025 17:37:40
%S A385737 176,224,264,336,504,644,756,950,1196,1232,1280,1500,1566,1650,1700,
%T A385737 2100,2112,2250,2366,2754,3036,3306,5676,5796,7296,8064,8316,8526,
%U A385737 9576,10206,10260,12474,13200,15872,16236,16896,17094,17150,20172,21714,21726,22382,22644
%N A385737 Perimeters of nondegenerate triangles with integer areas, whose side lengths are triangular numbers.
%C A385737 224 and 1280 are the only perimeters <= 10^6 of nondegenerate triangles whose side lengths (28, 91, 105 or 325, 325, 630, respectively) and areas (1176 or 25200, respectively) are triangular numbers.
%H A385737 Felix Huber, <a href="/A385737/b385737.txt">Table of n, a(n) for n = 1..315</a>
%H A385737 Felix Huber, <a href="/A385737/a385737.txt">Maple program to compute the triangles (incl. areas) with perimeter a(n)</a>
%H A385737 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a>
%e A385737 176 is a term because it is the perimeter of the triangle [55, 55, 66], where 55 and 66 are triangular numbers, which has an integer area of sqrt(88*(88 - 55)*(88 - 55)*(88 - 66)) = 1452.
%e A385737 224 is a term because it is the perimeter of the triangle [28, 91, 105], where 28, 91 and 105 are triangular numbers, which has an integer area of sqrt(112*(112 - 28)*(112 - 91)*(112 - 105)) = 1176 (which is also a triangular number).
%p A385737 A385737:=proc(P) # To get all perimeters <= P.
%p A385737     local p,x,y,z,u,v,w,s;
%p A385737     p:=[];
%p A385737     for z to floor((sqrt(24*P+9)-3)/6) do
%p A385737         for x from z to floor((sqrt(4*P-3)-1)/2) do
%p A385737             for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*P-x^2-x-z^2-z))-1)/2)) do
%p A385737             	u:=z*(z+1)/2;
%p A385737             	v:=y*(y+1)/2;
%p A385737             	w:=x*(x+1)/2;
%p A385737             	s:=(u+v+w)/2;
%p A385737             	if issqr(s*(s-u)*(s-v)*(s-w)) then
%p A385737                	    p:=[op(p),u+v+w]
%p A385737                	fi
%p A385737             od
%p A385737         od
%p A385737     od;
%p A385737     return op(sort(p))
%p A385737 end proc;
%p A385737 A385737(22644);
%Y A385737 Subsequence of A380875.
%Y A385737 Cf. A000217, A051516, A070083, A385736, A385872.
%K A385737 nonn
%O A385737 1,1
%A A385737 _Felix Huber_, Jul 16 2025