This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385737 #7 Jul 21 2025 17:37:40 %S A385737 176,224,264,336,504,644,756,950,1196,1232,1280,1500,1566,1650,1700, %T A385737 2100,2112,2250,2366,2754,3036,3306,5676,5796,7296,8064,8316,8526, %U A385737 9576,10206,10260,12474,13200,15872,16236,16896,17094,17150,20172,21714,21726,22382,22644 %N A385737 Perimeters of nondegenerate triangles with integer areas, whose side lengths are triangular numbers. %C A385737 224 and 1280 are the only perimeters <= 10^6 of nondegenerate triangles whose side lengths (28, 91, 105 or 325, 325, 630, respectively) and areas (1176 or 25200, respectively) are triangular numbers. %H A385737 Felix Huber, <a href="/A385737/b385737.txt">Table of n, a(n) for n = 1..315</a> %H A385737 Felix Huber, <a href="/A385737/a385737.txt">Maple program to compute the triangles (incl. areas) with perimeter a(n)</a> %H A385737 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a> %e A385737 176 is a term because it is the perimeter of the triangle [55, 55, 66], where 55 and 66 are triangular numbers, which has an integer area of sqrt(88*(88 - 55)*(88 - 55)*(88 - 66)) = 1452. %e A385737 224 is a term because it is the perimeter of the triangle [28, 91, 105], where 28, 91 and 105 are triangular numbers, which has an integer area of sqrt(112*(112 - 28)*(112 - 91)*(112 - 105)) = 1176 (which is also a triangular number). %p A385737 A385737:=proc(P) # To get all perimeters <= P. %p A385737 local p,x,y,z,u,v,w,s; %p A385737 p:=[]; %p A385737 for z to floor((sqrt(24*P+9)-3)/6) do %p A385737 for x from z to floor((sqrt(4*P-3)-1)/2) do %p A385737 for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*P-x^2-x-z^2-z))-1)/2)) do %p A385737 u:=z*(z+1)/2; %p A385737 v:=y*(y+1)/2; %p A385737 w:=x*(x+1)/2; %p A385737 s:=(u+v+w)/2; %p A385737 if issqr(s*(s-u)*(s-v)*(s-w)) then %p A385737 p:=[op(p),u+v+w] %p A385737 fi %p A385737 od %p A385737 od %p A385737 od; %p A385737 return op(sort(p)) %p A385737 end proc; %p A385737 A385737(22644); %Y A385737 Subsequence of A380875. %Y A385737 Cf. A000217, A051516, A070083, A385736, A385872. %K A385737 nonn %O A385737 1,1 %A A385737 _Felix Huber_, Jul 16 2025