cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385744 The number of iterations of the infinitary analog of the totient function A384247 that are required to reach from n to 1.

This page as a plain text file.
%I A385744 #7 Jul 11 2025 01:27:35
%S A385744 0,1,2,3,4,2,3,4,5,4,5,3,4,3,5,6,7,5,6,4,4,5,6,5,6,4,6,6,7,5,6,7,5,7,
%T A385744 6,6,7,6,6,7,8,4,5,6,8,6,7,6,7,6,8,7,8,6,8,6,7,7,8,6,7,6,7,7,7,5,6,7,
%U A385744 7,6,7,8,9,7,7,7,7,6,7,7,8,8,9,7,8,5,7
%N A385744 The number of iterations of the infinitary analog of the totient function A384247 that are required to reach from n to 1.
%C A385744 First differs from A049865 at n = 24.
%H A385744 Amiram Eldar, <a href="/A385744/b385744.txt">Table of n, a(n) for n = 1..10000</a>
%F A385744 a(n) = a(A384247(n)) + 1 for n >= 2.
%e A385744   n | a(n) | iterations
%e A385744   --+------+----------------------
%e A385744   2 |    1 | 2 -> 1
%e A385744   3 |    2 | 3 -> 2 -> 1
%e A385744   4 |    3 | 4 -> 3 -> 2 -> 1
%e A385744   5 |    4 | 5 -> 4 -> 3 -> 2 -> 1
%e A385744   6 |    2 | 6 -> 2 -> 1
%t A385744 f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n];
%t A385744 a[n_] := Length @ NestWhileList[iphi, n, # != 1 &] - 1; Array[a, 100]
%o A385744 (PARI) iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2))));}
%o A385744 a(n) = if(n ==  1, 0, 1 + a(iphi(n)));
%Y A385744 Cf. A384247, A385745, A385746, A385747.
%Y A385744 Similar sequences: A003434, A049865, A225320, A333609.
%K A385744 nonn,easy
%O A385744 1,3
%A A385744 _Amiram Eldar_, Jul 08 2025