cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385746 Numbers that are equal to the sum of their iterated infinitary analog of the totient function A384247.

This page as a plain text file.
%I A385746 #4 Jul 11 2025 01:27:40
%S A385746 3,10,18,21,48,160,288,3252,9304,13965,68526,719631,1531101,1954782,
%T A385746 28900572,39189195,14708055957
%N A385746 Numbers that are equal to the sum of their iterated infinitary analog of the totient function A384247.
%C A385746 Numbers k such that A385745(k) = k.
%e A385746   n | a(n) | iterations                        | sum
%e A385746   --+------+-----------------------------------+----------------------------
%e A385746   1 |    3 | 3 -> 2 -> 1                       | 2 + 1 = 3
%e A385746   2 |   10 | 10 -> 4 -> 3 -> 2 -> 1            | 4 + 3 + 2 + 1 = 10
%e A385746   3 |   18 | 18 -> 8 -> 4 -> 3 -> 2 -> 1       | 8 + 4 + 3 + 2 + 1 = 18
%e A385746   4 |   21 | 21 -> 12 -> 6 -> 2 -> 1           | 12 + 6 + 2 + 1 = 21
%e A385746   5 |   48 | 48 -> 30 -> 8 -> 4 -> 3 -> 2 -> 1 | 30 + 8 + 4 + 3 + 2 + 1 = 48
%t A385746 f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n];
%t A385746 infPerfTotQ[n_] := Plus @@ FixedPointList[iphi, n] == 2*n + 1; infPerfTotQ[1] = False; Select[Range[10^5], infPerfTotQ]
%o A385746 (PARI) iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2)))); }
%o A385746 s(n) = if(n == 1, 0, my(i = iphi(n)); i + s(i));
%o A385746 isok(k) = s(k) == k;
%Y A385746 Cf. A384247, A385744, A385745, A385747.
%Y A385746 Similar sequences: A082897, A286067, A330273.
%K A385746 nonn,more
%O A385746 1,1
%A A385746 _Amiram Eldar_, Jul 08 2025