A385747 Least number that reaches 1 after exactly n iterations of the infinitary analog of the totient function A384247.
1, 2, 3, 4, 5, 9, 16, 17, 41, 73, 101, 197, 467, 829, 1109, 2761, 4849, 7831, 12401, 26189, 52379, 85853, 139589, 237007, 395533, 947043, 1967027, 3446033, 5396427, 9510437, 17502533, 35005067, 71202449, 90187609, 164664701, 395199461, 705113873, 1265735729, 1803553457
Offset: 0
Keywords
Examples
n | a(n) | iterations --+------+--------------------------- 1 | 2 | 2 -> 1 2 | 3 | 3 -> 2 -> 1 3 | 4 | 4 -> 3 -> 2 -> 1 4 | 5 | 5 -> 4 -> 3 -> 2 -> 1 5 | 9 | 9 -> 8 -> 4 -> 3 -> 2 -> 1
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n]; numiter[n_] := Length @ NestWhileList[iphi, n, # != 1 &] - 1; seq[len_] := Module[{s = {}, k = 0, i = 0}, While[Length[s] < len, k++; If[numiter[k] == i, AppendTo[s, k]; i++]]; s]; seq[25]
-
PARI
iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2))));} numiter(n) = if(n == 1, 0, 1 + numiter(iphi(n))); list(len) = {my(k = 0, i = 0, c = 0); while(c < len, k++; if(numiter(k) == i, c++; print1(k, ", "); i++));}
Comments