cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385748 Numbers k such that A384247(k) divides k.

Original entry on oeis.org

1, 2, 6, 8, 12, 24, 32, 54, 96, 108, 128, 192, 216, 240, 384, 486, 512, 864, 972, 1536, 1728, 1944, 2048, 2160, 3072, 3456, 4374, 6000, 6144, 7776, 8192, 8748, 13824, 15552, 17496, 19440, 24576, 27648, 31104, 32768, 39366, 49152, 54000, 55296, 61440, 65280, 69984
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2025

Keywords

Comments

(2^(2^k)-1) * 2^(2^k) is a term for k = 0..5.
Apparently, the only prime factors of any term are 2 and the Fermat primes (A019434), i.e., A092506.
Apparently, except for n = 1, a(n) / A384247(a(n)) is either 2 or 3.

Examples

			  n | a(n) | a(n) / A384247(a(n))
  --+------+---------------------
  1 |    1 | 1 / 1 = 1
  2 |    2 | 2 / 1 = 2
  3 |    6 | 6 / 2 = 3
  4 |    8 | 8 / 4 = 2
  5 |   12 | 12 / 6 = 2
		

Crossrefs

Similar sequences: A007694, A298759, A319481, A335327, A373057.

Programs

  • Mathematica
    f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n]; q[n_] := Divisible[n, iphi[n]]; Select[Range[70000], q]
  • PARI
    iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2))));}
    isok(k) = !( k % iphi(k));