This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385755 #31 Jul 13 2025 12:38:58 %S A385755 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,26,29,30,31, %T A385755 32,34,35,36,37,38,41,43,46,47,48,53,58,59,61,62,64,67,70,71,72,73,74, %U A385755 79,82,83,86,89,94,96,97,101,103,106,107,109,113,118,122,127,128,131 %N A385755 Numbers k with a unique combination of bigomega(k) and sopfr(k). %H A385755 Michael De Vlieger, <a href="/A385755/b385755.txt">Table of n, a(n) for n = 1..10000</a> %H A385755 Michael De Vlieger, <a href="/A385755/a385755.txt">Mathematica code</a>. %H A385755 Michael De Vlieger, <a href="/A385755/a385755.png">Plot a(n) at (x,y) = (A001222(a(n)), A001414(a(n)))</a> for x <= 16 and y <= 33. %e A385755 All primes p are in the sequence, because they are characterized by the pair [b,s] = [bigomega=1, sopfr=p], and no other numbers have this pair. %e A385755 All even semiprimes 2*p are terms, because no other number can have [b,s]=[2,p+2]. p+2 is odd, and odd semiprimes p*q would have even s. %e A385755 20 with [b,s]=[3,2+2+5] and 27 with [b,s]=[3,3+3+3] are not in the sequence, because both have [b,s]=[3,9]. %e A385755 21 and 25 are not in the sequence, because both have [b,s]=[2,10]. %e A385755 36 is in the sequence as it is the only number having [4, 10]. - _David A. Corneth_, Jul 11 2025 %e A385755 From _Michael De Vlieger_, Jul 13 2025: (Start) %e A385755 Plot a(n) at (x,y) = (A001222(a(n)), A001414(a(n))): %e A385755 0 1 2 3 4 5 6 7 8 9 %e A385755 ----------------------------------------------------- %e A385755 0: 1 %e A385755 1: %e A385755 2: 2 %e A385755 3: 3 %e A385755 4: 4 %e A385755 5: 5 6 %e A385755 6: 9 8 %e A385755 7: 7 10 12 %e A385755 8: 15 18 16 %e A385755 9: 14 24 %e A385755 10: 30 36 32 %e A385755 11: 11 48 %e A385755 12: 35 72 64 %e A385755 13: 13 22 96 %e A385755 14: 70 144 128 %e A385755 15: 26 192 %e A385755 16: 288 256 %e A385755 17: 17 384 %e A385755 18: 576 512 %e A385755 19: 19 34 768 %e A385755 ... (End) %Y A385755 Cf. A001222, A001414, A385756, A385811. %Y A385755 Subsequences: A000040, A000079, A100484. %K A385755 nonn %O A385755 1,2 %A A385755 _Hugo Pfoertner_, Jul 09 2025