cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385767 G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x)^3 - x^2*A(x)^2*A'(x))).

This page as a plain text file.
%I A385767 #12 Jul 10 2025 22:40:12
%S A385767 1,2,11,103,1240,17405,272647,4652676,85204285,1657791964,34030090459,
%T A385767 733238701637,16520229963511,388058679087053,9481616930642904,
%U A385767 240524381652918706,6324953229391777117,172191111285984106951,4847629590517906310392,140987258808372483601766
%N A385767 G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x)^3 - x^2*A(x)^2*A'(x))).
%F A385767 a(n) = 1 + Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (i+1) a(i) * a(j) * a(k) * a(l).
%t A385767 terms = 20; A[_] = 0; Do[A[x_] = 1/((1-x)*(1-x*A[x]^3-x^2*A[x]^2*A'[x])) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* _Stefano Spezia_, Jul 09 2025 *)
%Y A385767 Cf. A321087, A385766.
%Y A385767 Cf. A349289.
%K A385767 nonn
%O A385767 0,2
%A A385767 _Seiichi Manyama_, Jul 09 2025