This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385802 #8 Jul 13 2025 07:04:35 %S A385802 8,2,6,6,1,2,4,6,2,5,4,1,6,2,8,1,1,1,0,0,8,3,4,8,5,0,5,9,3,4,0,6,7,3, %T A385802 0,9,8,3,0,7,8,0,0,3,2,5,9,5,4,4,6,3,8,2,7,8,2,9,9,7,8,2,8,3,2,5,2,6, %U A385802 2,1,6,9,7,0,0,2,6,4,2,3,1,5,5,9,3,0,9,3,0,8 %N A385802 Decimal expansion of the volume of a parabiaugmented dodecahedron with unit edge. %C A385802 The parabiaugmented dodecahedron is Johnson solid J_59. %C A385802 Also the volume of a metabiaugmented dodecahedron (Johnson solid J_60) with unit edge. %H A385802 Paolo Xausa, <a href="/A385802/b385802.txt">Table of n, a(n) for n = 1..10000</a> %H A385802 Wikipedia, <a href="https://en.wikipedia.org/wiki/Parabiaugmented_dodecahedron">Parabiaugmented dodecahedron</a>. %F A385802 Equals (25 + 11*sqrt(5))/6 = (25 + 11*A002163)/6. %F A385802 Equals A102769 + 2*A179552. %F A385802 Equals the largest root of 9*x^2 - 75*x + 5. %e A385802 8.266124625416281110083485059340673098307800325954... %t A385802 First[RealDigits[(25 + 11*Sqrt[5])/6, 10, 100]] (* or *) %t A385802 First[RealDigits[PolyhedronData["J59", "Volume"], 10, 100]] %Y A385802 Cf. A385803 (surface area). %Y A385802 Cf. A002163, A102769, A179552, A385695, A385804. %K A385802 nonn,cons,easy %O A385802 1,1 %A A385802 _Paolo Xausa_, Jul 09 2025