cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385806 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^4 - x^2*A(x)^3*A'(x)).

This page as a plain text file.
%I A385806 #10 Jul 09 2025 10:14:44
%S A385806 1,1,6,56,656,8901,134452,2210098,38972064,730162940,14436966166,
%T A385806 299765678868,6512235121216,147598065921110,3482200915723080,
%U A385806 85360331346689846,2170845829694670304,57202138454461379820,1559974375525184897080,43985410131699875744400
%N A385806 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^4 - x^2*A(x)^3*A'(x)).
%F A385806 a(0) = 1; a(n) = Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} (i+1) a(i) * a(j) * a(k) * a(l) * a(m).
%t A385806 terms = 20; A[_] = 0; Do[A[x_] = 1/(1-x*A[x]^4-x^2*A[x]^3*A'[x]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* _Stefano Spezia_, Jul 09 2025 *)
%Y A385806 Cf. A182304, A385801.
%Y A385806 Cf. A002294.
%K A385806 nonn
%O A385806 0,3
%A A385806 _Seiichi Manyama_, Jul 09 2025