cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385814 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal proper anti-runs (sequences decreasing by more than 1).

This page as a plain text file.
%I A385814 #10 Jul 10 2025 11:24:19
%S A385814 1,0,1,0,1,1,0,1,1,1,0,2,1,1,1,0,2,2,1,1,1,0,3,2,3,1,1,1,0,3,4,2,3,1,
%T A385814 1,1,0,4,5,4,3,3,1,1,1,0,5,5,6,5,3,3,1,1,1,0,6,8,7,6,6,3,3,1,1,1,0,7,
%U A385814 9,10,8,7,6,3,3,1,1,1
%N A385814 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal proper anti-runs (sequences decreasing by more than 1).
%e A385814 The partition (8,5,4,2,1) has maximal proper anti-runs ((8,5),(4,2),(1)) so is counted under T(20,3).
%e A385814 The partition (8,5,3,2,2) has maximal proper anti-runs ((8,5,3),(2),(2)) so is also counted under T(20,3).
%e A385814 Row n = 8 counts the following partitions:
%e A385814   .  8   611  5111  41111  32111   221111  2111111  11111111
%e A385814      71  521  4211  3221   311111
%e A385814      62  44   332   2222   22211
%e A385814      53  431  3311
%e A385814          422
%e A385814 Triangle begins:
%e A385814   1
%e A385814   0  1
%e A385814   0  1  1
%e A385814   0  1  1  1
%e A385814   0  2  1  1  1
%e A385814   0  2  2  1  1  1
%e A385814   0  3  2  3  1  1  1
%e A385814   0  3  4  2  3  1  1  1
%e A385814   0  4  5  4  3  3  1  1  1
%e A385814   0  5  5  6  5  3  3  1  1  1
%e A385814   0  6  8  7  6  6  3  3  1  1  1
%e A385814   0  7  9 10  8  7  6  3  3  1  1  1
%e A385814   0  9 11 13 12  9  8  6  3  3  1  1  1
%e A385814   0 10 14 16 15 13 10  8  6  3  3  1  1  1
%e A385814   0 12 19 18 21 17 14 11  8  6  3  3  1  1  1
%e A385814   0 14 21 26 23 24 19 15 11  8  6  3  3  1  1  1
%e A385814   0 17 26 31 33 28 26 20 16 11  8  6  3  3  1  1  1
%e A385814   0 19 32 37 40 39 31 28 21 16 11  8  6  3  3  1  1  1
%e A385814   0 23 38 47 50 47 45 34 29 22 16 11  8  6  3  3  1  1  1
%e A385814   0 26 45 57 61 61 54 48 36 30 22 16 11  8  6  3  3  1  1  1
%e A385814   0 31 53 71 75 76 70 60 51 37 31 22 16 11  8  6  3  3  1  1  1
%t A385814 Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1>#2+1&]]==k&]],{n,0,10},{k,0,n}]
%Y A385814 Row sums are A000041, strict A000009.
%Y A385814 Column k = 1 is A003114.
%Y A385814 For anti-runs instead of proper anti-runs we have A268193.
%Y A385814 The corresponding rank statistic is A356228.
%Y A385814 For proper runs instead of proper anti-runs we have A384881.
%Y A385814 For subsets instead of partitions we have A384893, runs A034839.
%Y A385814 The strict case is A384905.
%Y A385814 For runs instead of proper anti-runs we have A385815.
%Y A385814 A007690 counts partitions with no singletons (ranks A001694), complement A183558.
%Y A385814 A034296 counts flat or gapless partitions, ranks A066311 or A073491.
%Y A385814 A047993 counts partitions with max part = length, ranks A106529.
%Y A385814 A098859 counts Wilf partitions, complement A336866 (ranks A325992).
%Y A385814 A116608 counts partitions by distinct parts.
%Y A385814 A116931 counts sparse partitions, ranks A319630.
%Y A385814 Cf. A001227, A008284, A089259, A116674, A239455, A325325, A356226, A384880, A384885, A384887, A384906.
%K A385814 nonn,tabl
%O A385814 0,12
%A A385814 _Gus Wiseman_, Jul 09 2025