A385815 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive elements decreasing by 0 or 1.
1, 0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 5, 2, 0, 0, 0, 0, 7, 4, 0, 0, 0, 0, 0, 8, 7, 0, 0, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 13, 16, 1, 0, 0, 0, 0, 0, 0, 0, 15, 25, 2, 0, 0, 0, 0, 0, 0, 0, 0, 18, 34, 4, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
The partition (8,5,4,2,1) has maximal runs ((8),(5,4),(2,1)) so is counted under T(20,3). The partition (8,5,3,2,2) has maximal runs ((8),(5),(3,2,2)) so is also counted under T(20,3). Row n = 9 counts the following partitions: (9) (6,3) (5,3,1) (5,4) (7,2) (3,3,3) (8,1) (4,3,2) (4,4,1) (3,2,2,2) (5,2,2) (3,3,2,1) (6,2,1) (2,2,2,2,1) (7,1,1) (3,2,2,1,1) (4,2,2,1) (2,2,2,1,1,1) (4,3,1,1) (3,2,1,1,1,1) (5,2,1,1) (2,2,1,1,1,1,1) (6,1,1,1) (2,1,1,1,1,1,1,1) (3,3,1,1,1) (1,1,1,1,1,1,1,1,1) (4,2,1,1,1) (5,1,1,1,1) (4,1,1,1,1,1) (3,1,1,1,1,1,1) Triangle begins: 1 0 1 0 2 0 0 3 0 0 0 4 1 0 0 0 5 2 0 0 0 0 7 4 0 0 0 0 0 8 7 0 0 0 0 0 0 10 12 0 0 0 0 0 0 0 13 16 1 0 0 0 0 0 0 0 15 25 2 0 0 0 0 0 0 0 0 18 34 4 0 0 0 0 0 0 0 0 0 23 46 8 0 0 0 0 0 0 0 0 0 0 26 62 13 0 0 0 0 0 0 0 0 0 0 0 31 82 22 0 0 0 0 0 0 0 0 0 0 0
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1<=#2+1&]]==k&]],{n,0,20},{k,0,n}]