cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385815 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive elements decreasing by 0 or 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 5, 2, 0, 0, 0, 0, 7, 4, 0, 0, 0, 0, 0, 8, 7, 0, 0, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 13, 16, 1, 0, 0, 0, 0, 0, 0, 0, 15, 25, 2, 0, 0, 0, 0, 0, 0, 0, 0, 18, 34, 4, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2025

Keywords

Examples

			The partition (8,5,4,2,1) has maximal runs ((8),(5,4),(2,1)) so is counted under T(20,3).
The partition (8,5,3,2,2) has maximal runs ((8),(5),(3,2,2)) so is also counted under T(20,3).
Row n = 9 counts the following partitions:
  (9)                  (6,3)            (5,3,1)
  (5,4)                (7,2)
  (3,3,3)              (8,1)
  (4,3,2)              (4,4,1)
  (3,2,2,2)            (5,2,2)
  (3,3,2,1)            (6,2,1)
  (2,2,2,2,1)          (7,1,1)
  (3,2,2,1,1)          (4,2,2,1)
  (2,2,2,1,1,1)        (4,3,1,1)
  (3,2,1,1,1,1)        (5,2,1,1)
  (2,2,1,1,1,1,1)      (6,1,1,1)
  (2,1,1,1,1,1,1,1)    (3,3,1,1,1)
  (1,1,1,1,1,1,1,1,1)  (4,2,1,1,1)
                       (5,1,1,1,1)
                       (4,1,1,1,1,1)
                       (3,1,1,1,1,1,1)
Triangle begins:
   1
   0   1
   0   2   0
   0   3   0   0
   0   4   1   0   0
   0   5   2   0   0   0
   0   7   4   0   0   0   0
   0   8   7   0   0   0   0   0
   0  10  12   0   0   0   0   0   0
   0  13  16   1   0   0   0   0   0   0
   0  15  25   2   0   0   0   0   0   0   0
   0  18  34   4   0   0   0   0   0   0   0   0
   0  23  46   8   0   0   0   0   0   0   0   0   0
   0  26  62  13   0   0   0   0   0   0   0   0   0   0
   0  31  82  22   0   0   0   0   0   0   0   0   0   0   0
		

Crossrefs

Row sums are A000041, strict A000009.
Column k = 1 is A034296 (flat or gapless partitions, ranks A066311 or A073491).
For subsets instead of partitions we have A034839, anti-runs A384893.
The strict case appears to be A116674.
For anti-runs instead of runs we have A268193.
The corresponding rank statistic is A287170.
For proper runs instead of runs we have A384881.
For proper anti-runs instead of runs we have A385814.
A007690 counts partitions with no singletons (ranks A001694), complement A183558.
A047993 counts partitions with max part = length, rank A106529.
A098859 counts Wilf partitions, complement A336866 (ranks A325992).
A116608 counts partitions by distinct parts.
A116931 counts sparse partitions, ranks A319630.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1<=#2+1&]]==k&]],{n,0,20},{k,0,n}]