This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385820 #23 Jul 22 2025 18:32:38 %S A385820 1,2,27,1024,9765625,272097792,558545864083284007, %T A385820 295147905179352825856,1144561273430837494885949696427, %U A385820 305175781250000000000000000000000000,1890591424712781041871514584574319778449301246603238034051,98746073676238604311280222171685832518740805156864 %N A385820 Number of equivalence classes of finitely-supported integer functions on Z^2 modulo moves that add + or -1 to every cell whose coordinates form an arithmetic progression of length n. %H A385820 Ethan Ji, <a href="/A385820/b385820.txt">Table of n, a(n) for n = 1..36</a> %F A385820 a(n) = Product_{p^k | n : prime p, k = p-adic order of n} p^(n^2*(k*p^(2k) - p^k(p^k - 1)/(p - 1)) / (2*p^(2k))). %F A385820 a(p) = A076113(p), for prime p. %t A385820 a[n_Integer?Positive] := Module[{pairs = FactorInteger[n]}, Times @@ (#1^(n^2*(#2 #1^(2 #2) - (#1^#2 (#1^#2 - 1))/(#1 - 1))/(2 #1^(2 #2))) & @@@ pairs)] %o A385820 (PARI) a(n) = my(f=factor(n)); for (i=1, #f~, my(p=f[i,1], k=f[i,2]); f[i,2] = n^2*(k*p^(2*k) - p^k*(p^k-1)/(p-1))/(2*p^(2*k))); factorback(f); \\ _Michel Marcus_, Jul 10 2025 %Y A385820 Cf. A076113. %K A385820 nonn %O A385820 1,2 %A A385820 _Ethan Ji_, Jul 09 2025