A385825 a(n) = Sum_{k=0..n} (binomial(n, k) mod 5).
1, 2, 4, 8, 11, 2, 4, 8, 16, 22, 4, 8, 16, 22, 34, 8, 16, 22, 44, 48, 11, 22, 34, 48, 61, 2, 4, 8, 16, 22, 4, 8, 16, 32, 44, 8, 16, 32, 44, 68, 16, 32, 44, 88, 96, 22, 44, 68, 96, 122, 4, 8, 16, 22, 34, 8, 16, 32, 44, 68, 16, 32, 59, 68, 106, 22, 44, 68, 116, 142
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Richard Garfield and Herbert S. Wilf, The distribution of the binomial coefficients modulo p, Journal of Number Theory, 41 (1) (1992), 1-5.
Programs
-
Mathematica
a[n_]:=Sum[Mod[Binomial[n,k],5],{k,0,n}];Array[a,60,0] (* James C. McMahon, Jul 10 2025 *)
-
Python
from gmpy2 import digits from sympy.abc import x from sympy import Poly, rem def A385825(n): k = (1,2,4,3) s = digits(n,5) t = [s.count(str(i)) for i in range(1,5)] G = 2**t[0]*(x+2)**t[1]*(2*x**2+3)**t[3]*(2*x**3+2)**t[2] c = Poly(rem(G,x**4-1),x).all_coeffs()[::-1] return int(sum(k[i]*c[i] for i in range(len(c)) if c[i]))
Formula
Row sums of A095140. - R. J. Mathar, Jul 19 2025