cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385836 a(n) = 1 + Sum_{k=0..n-1} (1 + k^3) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385836 #10 Jul 10 2025 11:00:27
%S A385836 1,2,7,79,2446,166618,21508712,4732995201,1642479584974,
%T A385836 847546182102241,621260202463120771,623749689526374747439,
%U A385836 832709044623310548285995,1442255257225526024262579955,3174408056872712362090099214740,8723280646832436679639469748539639
%N A385836 a(n) = 1 + Sum_{k=0..n-1} (1 + k^3) * a(k) * a(n-1-k).
%F A385836 G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*A(x) - x*Sum_{k=1..3} Stirling2(3,k) * x^k * (d^k/dx^k A(x)) ) ).
%o A385836 (PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, (1+j^3)*v[j+1]*v[i-j])); v;
%Y A385836 Cf. A321087, A385835, A385837, A385838, A385839.
%Y A385836 Cf. A385759.
%K A385836 nonn
%O A385836 0,2
%A A385836 _Seiichi Manyama_, Jul 09 2025