cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385837 a(n) = 1 + Sum_{k=0..n-1} (1 + k^4) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385837 #10 Jul 10 2025 11:00:19
%S A385837 1,2,7,135,11472,2983290,1876558882,2439543938823,5867113337771476,
%T A385837 24055177364999767957,157922269330003687462469,
%U A385837 1579854504025376907525660119,23136970006572094830720177877037,479860765871358769352536441406761329,13707222893156109310485886790873337444816
%N A385837 a(n) = 1 + Sum_{k=0..n-1} (1 + k^4) * a(k) * a(n-1-k).
%F A385837 G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*A(x) - x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ) ).
%o A385837 (PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, (1+j^4)*v[j+1]*v[i-j])); v;
%Y A385837 Cf. A321087, A385835, A385836, A385838, A385839.
%Y A385837 Cf. A385760.
%K A385837 nonn
%O A385837 0,2
%A A385837 _Seiichi Manyama_, Jul 09 2025