cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385838 a(n) = 1 + Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385838 #12 Jul 10 2025 11:00:23
%S A385838 1,2,7,247,61006,62715298,196236522104,1526720482525833,
%T A385838 25665699044532909262,841116296816234980686001,
%U A385838 49670440804927429155777517363,4967242766473223753247263215133503,799999284003076533259467892632499306811,199068621859048073152067295737349123675521467
%N A385838 a(n) = 1 + Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).
%F A385838 G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*A(x) - x*Sum_{k=1..5} Stirling2(5,k) * x^k * (d^k/dx^k A(x)) ) ).
%o A385838 (PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, (1+j^5)*v[j+1]*v[i-j])); v;
%Y A385838 Cf. A321087, A385835, A385836, A385837, A385839.
%Y A385838 Cf. A385761, A385843.
%K A385838 nonn
%O A385838 0,2
%A A385838 _Seiichi Manyama_, Jul 09 2025