cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385839 a(n) = 1 + Sum_{k=0..n-1} (1 + k^6) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385839 #11 Jul 10 2025 11:00:15
%S A385839 1,2,7,471,345240,1415486250,22122636527386,1032242227753172079,
%T A385839 121446394933841583123508,31836929544298684420302348229,
%U A385839 16919577022277987344334514604394117,16919644700745370569015746375165719379327,29974250364360598877961318618919670090162246645
%N A385839 a(n) = 1 + Sum_{k=0..n-1} (1 + k^6) * a(k) * a(n-1-k).
%F A385839 G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*A(x) - x*Sum_{k=1..6} Stirling2(6,k) * x^k * (d^k/dx^k A(x)) ) ).
%o A385839 (PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, (1+j^6)*v[j+1]*v[i-j])); v;
%Y A385839 Cf. A321087, A385835, A385836, A385837, A385838.
%Y A385839 Cf. A385834.
%K A385839 nonn
%O A385839 0,2
%A A385839 _Seiichi Manyama_, Jul 09 2025