cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385842 a(n) = 1 + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).

This page as a plain text file.
%I A385842 #9 Jul 10 2025 11:00:03
%S A385842 1,1,2,34,2789,716837,448746495,582025808335,1398026940957747,
%T A385842 5727717572863611987,37585285548218779674700,
%U A385842 375890452313654055440508988,5503788078310849677217561978523,114132054134076966886682122559148347,3259839741208602005078393364829175139526
%N A385842 a(n) = 1 + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).
%F A385842 G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ) ).
%o A385842 (PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^4*v[j+1]*v[i-j])); v;
%Y A385842 Cf. A143917, A385840, A385841, A385843.
%K A385842 nonn
%O A385842 0,3
%A A385842 _Seiichi Manyama_, Jul 09 2025