This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385849 #15 Jul 14 2025 22:09:02 %S A385849 1,4,1,9,13,1,16,5,29,1,25,41,25,9,1,36,61,11,43,18,1,49,17,55,21,27, %T A385849 139,1,64,113,149,29,38,199,29,1,81,29,97,23,51,271,2,71,1,100,181,35, %U A385849 49,6,355,53,95,128,1,121,221,151,61,83,451,17,41,167,101,1 %N A385849 Triangle read by rows: T(n,k) = numerator((Sum_{i=1..k} (n-i+1)^2)/(Sum_{i=1..k} i^2)), with 1 <= k <= n. %H A385849 Stefano Spezia, <a href="/A385849/b385849.txt">Table of n, a(n) for n = 1..11325</a> (first 150 rows of the triangle, flattened) %H A385849 Michael De Vlieger, <a href="/A385849/a385849.png">Scatterplot of a(n)</a>, n = 1..11325. %F A385849 T(n,k) = numerator((1 - 3*k + 2*k^2 + 6*n - 6*k*n + 6*n^2)/(1 + 3*k + 2*k^2)). %e A385849 Triangle of the fractions begins as: %e A385849 1/1; %e A385849 4/1, 1/1; %e A385849 9/1, 13/5, 1/1; %e A385849 16/1, 5/1, 29/14, 1/1; %e A385849 25/1, 41/5, 25/7, 9/5, 1/1; %e A385849 36/1, 61/5, 11/2, 43/15, 18/11, 1/1; %e A385849 49/1, 17/1, 55/7, 21/5, 27/11, 139/91, 1/1; %e A385849 ... %e A385849 T(4,3)/A385850(4,3) = (4^2 + 3^2 + 2^2)/(1^2 + 2^2 + 3^2) = 29/14. %t A385849 T[n_,k_]:=Numerator[(1-3k+2k^2+6n-6k*n+6n^2)/(1+3k+2k^2)]; Table[T[n,k],{n,11},{k,n}]//Flatten %Y A385849 Cf. A000012 (diagonal), A000290 (1st column), A322135, A385850 (denominators). %K A385849 nonn,easy,frac,look,tabl %O A385849 1,2 %A A385849 _Stefano Spezia_, Jul 10 2025