cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385870 Number of subsets of {1,2,...,n} such that no two elements differ by 1 or 6.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 21, 29, 45, 66, 99, 148, 218, 337, 497, 755, 1131, 1699, 2571, 3824, 5794, 8661, 13041, 19601, 29376, 44311, 66349, 99936, 150000, 225387, 339000, 508631, 765392, 1148865, 1727249, 2595270, 3898324, 5861084, 8801690, 13231745, 19877092, 29869125
Offset: 0

Views

Author

Michael A. Allen, Jul 11 2025

Keywords

Comments

a(n) is the number of permutations of 0..n with each element moved by -1 to 1 places and every 6 consecutive elements having their maximum within 6 of their minimum.

Examples

			For n = 7, the 29 subsets are {}, {1}, {2}, {3}, {1,3}, {4}, {1,4}, {2,4}, {5}, {1,5}, {2,5}, {3,5}, {1,3,5}, {6}, {1,6}, {2,6}, {3,6}, {1,3,6}, {4,6}, {1,4,6}, {2,4,6}, {7}, {2,7}, {3,7}, {4,7}, {2,4,7}, {5,7}, {2,5,7}, {3,5,7}.
		

Crossrefs

Column k=33 of A376033.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 5*x^6 + 3*x^8 + 2*x^9 - x^10 + x^11 - 4*x^12 - x^13 - 2*x^14 - 2*x^15 - x^17)/(1 - x - x^4 - x^5 + 2*x^6 - 4*x^7 + 2*x^8 - 2*x^10 + 2*x^11 - 4*x^12 + 3*x^13 - x^14 + 2*x^16 - x^17 + x^18),{x,0,41}],x]
    LinearRecurrence[{1,0,0,1,1,-2,4,-2,0,2,-2,4,-3,1,0,-2,1,-1},{1,2,3,5,8,13,21,29,45,66,99,148,218,337,497,755,1131,1699}, 42]

Formula

G.f.: (1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 5*x^6 + 3*x^8 + 2*x^9 - x^10 + x^11 - 4*x^12 - x^13 - 2*x^14 - 2*x^15 - x^17)/(1 - x - x^4 - x^5 + 2*x^6 - 4*x^7 + 2*x^8 - 2*x^10 + 2*x^11 - 4*x^12 + 3*x^13 - x^14 + 2*x^16 - x^17 + x^18).
a(n) = a(n-1) + a(n-4) + a(n-5) - 2*a(n-6) + 4*a(n-7) - 2*a(n-8) + 2*a(n-10) - 2*a(n-11) + 4*a(n-12) - 3*a(n-13) + a(n-14) - 2*a(n-16) + a(n-17) - a(n-18) for n >= 18.