cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385872 Areas of nondegenerate triangles with perimeter A385737(n) whose side lengths are triangular numbers.

This page as a plain text file.
%I A385872 #12 Jul 22 2025 22:30:17
%S A385872 1452,1176,2376,3780,8316,10626,14742,28500,12558,32340,25200,94500,
%T A385872 18792,130680,89250,158760,130680,155250,53508,93636,122958,208278,
%U A385872 893970,1199772,2183328,1130976,2058210,1414098,3160080,4000752,3898800,324324,4900500,1845120,7427970
%N A385872 Areas of nondegenerate triangles with perimeter A385737(n) whose side lengths are triangular numbers.
%C A385872 45189144 is the smallest integer area of a right triangle whose sides are triangular numbers. This area corresponds to the triangle [8778, 10296, 13530].
%C A385872 From _David A. Corneth_, Jul 18 2025: (Start) If sidelengths are u, v, w where 0 < u < v < w < u + v then the area can be written as A = ((u + v + w) * (u + v - w) * (u - v + w) * (-u + v + w)) / 16 = k^2. If A is a square then 16*A is a square (possible extraneous resulting from this can be removed at the end).
%C A385872 We may rewrite 16*A as ((u + v)^2 - w^2) * (w^2 - (v - u)^2) = k^2
%C A385872 Since their product is a square we may write
%C A385872 ((u + v)^2 - w^2) * t^2 = (w^2 - (v - u)^2). where t > 1 is a rational. When u, v and t are chosen we can solve for w.
%C A385872 w^2 = (t^2*(u-v)^2 + (u+v)^2) / (t^2 + 1). (End)
%H A385872 Felix Huber, <a href="/A385872/b385872.txt">Table of n, a(n) for n = 1..315</a>
%H A385872 Felix Huber, <a href="/A385872/a385872.txt">Maple program</a>
%H A385872 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a>
%e A385872 a(1) = 1452 is the area of the triangle [55, 55, 66] with perimeter A385737(1) = 176, where 55 and 66 are triangular numbers.
%e A385872 a(2) = 1176 is the area of the triangle [28, 91, 105] with perimeter A385737(2) = 224, where 28, 91 and 105 are triangular numbers.
%e A385872 From _David A. Corneth_, Jul 18 2025: (Start)
%e A385872 From (u, v) = (28, 91) we get
%e A385872 ((u + v)^2 - w^2) * t^2 = (w^2 - (v - u)^2)
%e A385872 (119 - w^2) * t^2 = (w^2 - 63^2). Testing t = 2/3 gives the desired w. (End)
%p A385872 A385872:=proc(P) # To get all integer areas of triangles with perimeters <= P.
%p A385872     local p,x,y,z,u,v,w,s,i;
%p A385872     p:=[];
%p A385872     for z to floor((sqrt(24*P+9)-3)/6) do
%p A385872         for x from z to floor((sqrt(4*P-3)-1)/2) do
%p A385872             for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*P-x^2-x-z^2-z))-1)/2)) do
%p A385872             	u:=z*(z+1)/2;
%p A385872             	v:=y*(y+1)/2;
%p A385872             	w:=x*(x+1)/2;
%p A385872             	s:=(u+v+w)/2;
%p A385872             	if issqr(s*(s-u)*(s-v)*(s-w)) then
%p A385872                	    p:=[op(p),[u+v+w,sqrt(s*(s-u)*(s-v)*(s-w))]]
%p A385872                	fi
%p A385872             od
%p A385872         od
%p A385872     od;
%p A385872     return seq(sort(p)[i,2],i=1..nops(p))
%p A385872 end proc;
%p A385872 A385872(16236);
%Y A385872 Cf. A000217, A051516, A188158, A385736, A385737.
%K A385872 nonn
%O A385872 1,1
%A A385872 _Felix Huber_, Jul 18 2025