This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385873 #20 Jul 29 2025 00:18:37 %S A385873 1,2,1,3,1,2,1,1,2,1,1,2,1,3,1,2,1,1,2,1,4,1,2,1,1,2,1,3,1,2,1,1,2,1, %T A385873 3,1,2,1,1,2,1,1,2,1,3,1,2,1,1,2,1,1,2,1,3,1,2,1,4,1,2,1,1,2,1,1,3,2, %U A385873 1,1,2,1,1,2,1,3,1,2,1,1,2,1,5,1,2,1,1,2,1,3,1,2,1,1,2,1,1,2,1,3,1,2,1,1,2,1,4 %N A385873 A sequence constructed by greedily sampling the Poisson distribution for parameter value 1 so as to minimize discrepancy. %C A385873 The geometric mean approaches A385686 = exp((Sum_{k>=2} log(k)/k!)/(e-1)) in the limit. %C A385873 The Poisson distribution used here is p(i) = 1/((e-1)*i!). %H A385873 Jwalin Bhatt, <a href="/A385873/b385873.txt">Table of n, a(n) for n = 1..10000</a> %H A385873 Wikipedia, <a href="https://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a> %e A385873 Let p(k) denote the probability of k and c(k) denote the number of occurrences of k among the first n-1 terms; then the expected number of occurrences of k among n random terms is given by n*p(k). %e A385873 We subtract the actual occurrences c(k) from the expected occurrences and pick the one with the highest value. %e A385873 | n | n*p(1) - c(1) | n*p(2) - c(2) | n*p(3) - c(3) | choice | %e A385873 |---|---------------|---------------|---------------|--------| %e A385873 | 1 | 0.581 | 0.290 | 0.096 | 1 | %e A385873 | 2 | 0.163 | 0.581 | 0.193 | 2 | %e A385873 | 3 | 0.745 | -0.127 | 0.290 | 1 | %e A385873 | 4 | 0.327 | 0.163 | 0.387 | 3 | %e A385873 | 5 | 0.909 | 0.454 | -0.515 | 1 | %t A385873 probCountDiff[j_, k_, count_]:=N[k/((E-1)*Factorial[j])]-Lookup[count, j, 0] %t A385873 samplePDF[n_]:=Module[{coeffs, unreachedVal, counts, k, probCountDiffs, mostProbable}, %t A385873 coeffs=ConstantArray[0, n]; unreachedVal=1; counts=<||>; %t A385873 Do[probCountDiffs=Table[probCountDiff[i, k, counts], {i, 1, unreachedVal}]; %t A385873 mostProbable=First@FirstPosition[probCountDiffs, Max[probCountDiffs]]; %t A385873 If[mostProbable==unreachedVal, unreachedVal++]; coeffs[[k]]=mostProbable; %t A385873 counts[mostProbable]=Lookup[counts, mostProbable, 0]+1; , {k, 1, n}]; coeffs] %t A385873 A385873=samplePDF[120] %Y A385873 Cf. A383238, A385685, A385686. %K A385873 nonn %O A385873 1,2 %A A385873 _Jwalin Bhatt_, Jul 11 2025