This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385879 #14 Jul 27 2025 21:57:27 %S A385879 3,4,5,5,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9,9,9,9,10,10,10,10,10,10,10, %T A385879 10,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12, %U A385879 13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14 %N A385879 Values of u in triples (u, v, w) such that the polynomial x^3 + u*x^2 + v*x + w has 3 (possibly repeated) negative integer zeros; the triples are ordered by the inequality u < v. %e A385879 First 20 triples: %e A385879 u v w %e A385879 3 3 1 %e A385879 4 5 2 %e A385879 5 7 3 %e A385879 5 8 4 %e A385879 6 9 4 %e A385879 6 11 6 %e A385879 6 12 8 %e A385879 7 11 5 %e A385879 7 14 8 %e A385879 7 15 9 %e A385879 7 16 12 %e A385879 8 13 6 %e A385879 8 17 10 %e A385879 8 19 12 %e A385879 8 20 16 %e A385879 8 21 18 %e A385879 9 15 7 %e A385879 9 20 12 %e A385879 9 23 15 %e A385879 9 24 16 %e A385879 (x + 1)^3 = x^3 + 3*x^2 + 3*x + 1, so (3, 3, 1) is in the list; here the negative zeros are -1, -1, and -1. %t A385879 z = 120; %t A385879 t = Table[{b + c + d, c d + d b + b c, b c d}, {b, 1, z}, {c, 1, z}, {d, 1, z}]; %t A385879 t1 = Union[Flatten[t, 2]]; t2 = Take[t1, 40] %t A385879 Grid[t2] %Y A385879 Cf. A385880, A386285, A386286. %K A385879 nonn %O A385879 1,1 %A A385879 _Clark Kimberling_, Jul 11 2025