This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385882 #6 Jul 27 2025 16:27:15 %S A385882 8,20,27,38,57,64,62,99,118,125,92,153,190,209,216,128,219,280,317, %T A385882 336,343,170,297,388,449,486,505,512,218,387,514,605,666,703,722,729, %U A385882 272,489,658,785,876,937,974,993,1000,332,603,820,989,1116,1207,1268,1305 %N A385882 Values of v in the (1,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to m^1 + u^3 = v^1 + w^3, in positive integers, with m<v, sorted by u, then v. %C A385882 A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m<v and m^p + u^q = v^p + w^q. Here, m = 1, p = 1, q = 3. %e A385882 First thirty (1,3)-quartals (1,u,v,w): %e A385882 m u v w %e A385882 1 2 8 1 %e A385882 1 3 20 2 %e A385882 1 3 27 1 %e A385882 1 4 38 3 %e A385882 1 4 57 2 %e A385882 1 4 64 1 %e A385882 1 5 62 4 %e A385882 1 5 99 3 %e A385882 1 5 118 2 %e A385882 1 5 125 1 %e A385882 1 6 92 5 %e A385882 1 6 153 4 %e A385882 1 6 190 3 %e A385882 1 6 209 2 %e A385882 1 6 216 1 %e A385882 1 7 128 6 %e A385882 1 7 219 5 %e A385882 1 7 280 4 %e A385882 1 7 317 3 %e A385882 1 7 336 2 %e A385882 1 7 343 1 %e A385882 1 8 170 7 %e A385882 1 8 297 6 %e A385882 1 8 388 5 %e A385882 1 8 449 4 %e A385882 1 8 486 3 %e A385882 1 8 505 2 %e A385882 1 8 512 1 %e A385882 1 9 218 8 %e A385882 1 9 387 7 %e A385882 1^1 + 4^3 = 57^1 + 2^3, so (1,4,57,2) is in the list. %t A385882 quartals[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs}, %t A385882 For[u = 1, u <= max, u++, lhs = m^p + u^q; %t A385882 AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];]; %t A385882 For[v = m + 1, v <= max, v++, %t A385882 For[w = 1, w <= max, w++, rhs = v^p + w^q; If[KeyExistsQ[lhsD, rhs], %t A385882 Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];]; %t A385882 ans = SortBy[ans, #[[2]] &]; %t A385882 Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ", %t A385882 ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ", %t A385882 ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i, %t A385882 Length[ans]}]; ans]; %t A385882 solns = quartals[1, 1, 3, 2000] (* Solutions restricted to v<2000 *) %t A385882 Grid[solns] %t A385882 u1 = Map[#[[2]] &, solns] (*u, A003057 *) %t A385882 v1 = Map[#[[3]] &, solns] (*v, A385882 *) %t A385882 w1 = Map[#[[4]] &, solns] (*w, A004736 *) %t A385882 (* _Peter J. C. Moses_, Jun 20 2025 *) %Y A385882 Guide to related sequences: %Y A385882 m | u | v | w %Y A385882 --+---------+---------+-------- %Y A385882 1 | A003057 | A385882 | A004736 %Y A385882 2 | A003057 | A386215 | A004736 %Y A385882 3 | A003057 | A386217 | A004736 %Y A385882 4 | A003057 | A386219 | A004736 %Y A385882 --+---------+---------+--------- %Y A385882 Cf. A003057, A004736. %K A385882 nonn %O A385882 1,1 %A A385882 _Clark Kimberling_, Jul 21 2025