This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385884 #10 Aug 16 2025 16:07:05 %S A385884 1,3,4,5,6,7,7,8,8,9,10,10,11,12,12,13,13,13,14,14,15,16,16,16,17,18, %T A385884 18,18,19,19,19,20,20,21,22,22,22,23,23,24,24,25,25,25,26,26,26,27,28, %U A385884 28,28,28,28,29,30,30,31,31,31,32,32,33,33,33,34,34,34 %N A385884 Values of u in the quartets (2, u, v, w) of type 2; i.e., values of u for solutions to 2*(2 + u) = v*(v - w), in positive integers, with v > 1, sorted by nondecreasing values of u; see Comments. %C A385884 A 4-tuple (m, u, v, w) is a quartet of type 2 if m, u, v, w are distinct positive integers such that m < v and m*(m + u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 2. %e A385884 First 20 quartets (2,u,v,w) of type 2: %e A385884 m u v w %e A385884 2 1 6 5 %e A385884 2 3 10 9 %e A385884 2 4 12 11 %e A385884 2 5 14 13 %e A385884 2 6 16 15 %e A385884 2 7 6 3 %e A385884 2 7 18 17 %e A385884 2 8 5 1 %e A385884 2 8 20 19 %e A385884 2 9 22 21 %e A385884 2 10 8 5 %e A385884 2 10 24 23 %e A385884 2 11 26 25 %e A385884 2 12 7 3 %e A385884 2 12 28 27 %e A385884 2 13 6 1 %e A385884 2 13 10 7 %e A385884 2 13 30 29 %e A385884 2 14 8 4 %e A385884 2 14 32 31 %e A385884 2 (2 +4) = 12 (12 - 11), so (2,4,12,11) is in the list. %t A385884 solnsM[m_, max_] := %t A385884 Module[{ans = {}, rhs = {}, u, v, w, lhs, matching}, %t A385884 Do[Do[AppendTo[rhs, {v*(v - w), v, w}], {w, max}], {v, %t A385884 m*(m + max)}]; %t A385884 rhs = GatherBy[rhs, First]; %t A385884 Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &]; %t A385884 If[Length[matching] > 0, %t A385884 Do[AppendTo[ans, %t A385884 Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i, %t A385884 Length[matching]}]], {u, max}]; %t A385884 ans = Flatten[ans, 1]; %t A385884 Select[ %t A385884 Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &, %t A385884 Sort[Select[DeleteDuplicates[ans], %t A385884 Length[Union[#]] == 4 &]]]], #[[1]] == m &]]; %t A385884 TableForm[solns = solnsM[2, 100], %t A385884 TableHeadings -> {None, {"m", "u", "v", "w"}}] %t A385884 u1 = Map[#[[2]] &, solns] (*u, A385884 *) %t A385884 v1 = Map[#[[3]] &, solns] (*v, A386216 *) %t A385884 w1 = Map[#[[4]] &, solns] (*w, A386982 *) %t A385884 (* _Peter J. C. Moses_, Jun 15 2025 *) %Y A385884 Cf. A385182 (type 1, m=1), A386630 (type 3, m=1). %K A385884 nonn %O A385884 1,2 %A A385884 _Clark Kimberling_, Aug 07 2025