This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385895 #12 Jul 24 2025 10:52:25 %S A385895 1,0,1,0,1,1,0,1,3,3,0,3,9,11,11,0,11,33,51,57,57,0,57,171,273,339, %T A385895 361,361,0,361,1083,1761,2307,2649,2763,2763,0,2763,8289,13587,18201, %U A385895 21723,23889,24611,24611,0,24611,73833,121611,165057,201459,228633,245211,250737,250737 %N A385895 Table read by rows: T(n, k) = T(n, k-1) + m * T(n-1, n-k) for k > 1, T(n, 1) = T(n-1, n-1), and T(n, 0) = 0^n, for m = 2. %C A385895 The sequence extends the generalized Euler numbers A001586 to a regular table by a parametrized Seidel transformation (see the Python program) that for the case m = 1 leads to the Euler-Bernoulli numbers A008281. %e A385895 Triangle begins: %e A385895 [0] 1; %e A385895 [1] 0, 1; %e A385895 [2] 0, 1, 1; %e A385895 [3] 0, 1, 3, 3; %e A385895 [4] 0, 3, 9, 11, 11; %e A385895 [5] 0, 11, 33, 51, 57, 57; %e A385895 [6] 0, 57, 171, 273, 339, 361, 361; %e A385895 [7] 0, 361, 1083, 1761, 2307, 2649, 2763, 2763; %e A385895 [8] 0, 2763, 8289, 13587, 18201, 21723, 23889, 24611, 24611; %p A385895 T := proc(n, k) option remember; ifelse(k = 0, 0^n, ifelse(k = 1, T(n-1, n-1), T(n, k-1) + 2*T(n-1, n-k))) end: seq(seq(T(n, k), k = 0..n), n = 0..9); %t A385895 T[n_, k_] := T[n, k] = %t A385895 Which[ %t A385895 k == 0, Boole[n == 0], %t A385895 k == 1, T[n - 1, n - 1], %t A385895 True, T[n, k - 1] + 2*T[n - 1, n - k] %t A385895 ]; %t A385895 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten %o A385895 (Python) %o A385895 from functools import cache %o A385895 @cache %o A385895 def seidel(n: int, m: int) -> list[int]: %o A385895 if n == 0: return [1] %o A385895 rowA = seidel(n - 1, m) %o A385895 row = [0] + rowA %o A385895 row[1] = row[n] %o A385895 for k in range(2, n + 1): %o A385895 row[k] = row[k - 1] + m * rowA[n - k] %o A385895 return row %o A385895 def A385895row(n: int) -> list[int]: return seidel(n, 2) %o A385895 for n in range(9): print(A385895row(n)) %Y A385895 Cf. A001586 (main diagonal), A123110 (m=0), A008281 (m=1), this sequence (m=2). %K A385895 nonn,tabl %O A385895 0,9 %A A385895 _Peter Luschny_, Jul 20 2025