This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385896 #15 Jul 24 2025 11:51:53 %S A385896 1,1,1,1,1,1,1,1,2,1,1,1,3,5,1,1,1,4,11,16,1,1,1,5,19,57,61,1,1,1,6, %T A385896 29,136,361,272,1,1,1,7,41,265,1201,2763,1385,1,1,1,8,55,456,3001, %U A385896 13024,24611,7936,1,1,1,9,71,721,6301,42125,165619,250737,50521,1 %N A385896 Array read by ascending antidiagonals: A(n, k) = k! * [x^k] (1 - sin(n*x))^(-1/n) for n > 0, A(0, k) = 1. %F A385896 A(n, k) = T(k, k, n - k) where T(n, k, m) = T(n, k-1, m) + m * T(n-1, n-k-1, m) for k > 0, T(n, 0, m) = T(n-1, n-1, m), and T(0, 0, m) = 1. %F A385896 Column n is a linear recurrence with kernel [(-1)^k*A135278(n, k), k = 0..n]. %e A385896 Table starts: %e A385896 [0] 1, 1, 1, 1, 1, 1, 1, ... [A000012] %e A385896 [1] 1, 1, 2, 5, 16, 61, 272, ... [A000111] %e A385896 [2] 1, 1, 3, 11, 57, 361, 2763, ... [A001586] %e A385896 [3] 1, 1, 4, 19, 136, 1201, 13024, ... [A007788] %e A385896 [4] 1, 1, 5, 29, 265, 3001, 42125, ... [A144015] %e A385896 [5] 1, 1, 6, 41, 456, 6301, 108576, ... [A230134] %e A385896 [6] 1, 1, 7, 55, 721, 11761, 240247, ... [A227544] %e A385896 [7] 1, 1, 8, 71, 1072, 20161, 476288, ... [A235128] %e A385896 [8] 1, 1, 9, 89, 1521, 32401, 869049, ... [A230114] %e A385896 [A000027] | [A187277] | [A385898]. %e A385896 [A028387] [A385897] %e A385896 . %e A385896 Seen as a triangle: %e A385896 [0] 1; %e A385896 [1] 1, 1; %e A385896 [2] 1, 1, 1; %e A385896 [3] 1, 1, 2, 1; %e A385896 [4] 1, 1, 3, 5, 1; %e A385896 [5] 1, 1, 4, 11, 16, 1; %e A385896 [6] 1, 1, 5, 19, 57, 61, 1; %e A385896 [7] 1, 1, 6, 29, 136, 361, 272, 1; %e A385896 [8] 1, 1, 7, 41, 265, 1201, 2763, 1385, 1; %p A385896 MAX := 16: ser := n -> series((1 - sin(n*x))^(-1/n), x, MAX): %p A385896 A := (n, k) -> if n = 0 then 1 else k!*coeff(ser(n), x, k) fi: %p A385896 seq(lprint(seq(A(n, k), k = 0..8)), n = 0..8); %t A385896 T[n_, k_, m_] := T[n, k, m] = %t A385896 Which[ %t A385896 n < 0 || k < 0, 0, %t A385896 n == 0 && k == 0, 1, %t A385896 k == 0, T[n - 1, n - 1, m], %t A385896 True, T[n, k - 1, m] + m*T[n - 1, n - k - 1, m] %t A385896 ]; %t A385896 A[n_, k_] := T[k, k, n - k]; %t A385896 Table[A[n, k], {n, 0, 10}, {k, 0, n}] // Flatten %Y A385896 Rows: A000012, A000111, A001586, A007788, A144015, A230134, A227544, A235128, A230114. %Y A385896 Columns: A000027, A028387, A187277, A385897, A385898. %Y A385896 Cf. A135278. %K A385896 nonn,tabl %O A385896 0,9 %A A385896 _Peter Luschny_, Jul 20 2025