This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385899 #20 Aug 03 2025 16:37:56 %S A385899 1,0,2,0,-4,16,0,6,-96,216,0,-8,384,-2592,4096,0,10,-1280,19440, %T A385899 -81920,100000,0,-12,3840,-116640,983040,-3000000,2985984,0,14,-10752, %U A385899 612360,-9175040,52500000,-125411328,105413504,0,-16,28672,-2939328,73400320,-700000000,3009871872,-5903156224,4294967296 %N A385899 Triangle read by rows: T(n, k, m) = binomial(n, k) * k^n * m^k * (-1)^(n - k) for m = 2. %H A385899 Paolo Xausa, <a href="/A385899/b385899.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150 of triangle, flattened). %e A385899 Triangle begins: %e A385899 [0] 1; %e A385899 [1] 0, 2; %e A385899 [2] 0, -4, 16; %e A385899 [3] 0, 6, -96, 216; %e A385899 [4] 0, -8, 384, -2592, 4096; %e A385899 [5] 0, 10, -1280, 19440, -81920, 100000; %e A385899 [6] 0, -12, 3840, -116640, 983040, -3000000, 2985984; %e A385899 [7] 0, 14, -10752, 612360, -9175040, 52500000, -125411328, 105413504; %p A385899 T := (n, k) -> binomial(n, k) * k^n * 2^k * (-1)^(n - k): %p A385899 seq(seq(T(n, k), k = 0..n), n = 0..7); %t A385899 A385899[n_, k_] := If[k == 0, Boole[n == 0], Binomial[n, k]*k^n*2^k*(-1)^(n - k)]; %t A385899 Table[A385899[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Aug 03 2025 *) %Y A385899 Cf. A000007 (m=0), A258773 (m=1), this sequence (m=2), A062971 (main diagonal), A375540 (row sums), A375541 (row sums of absolute terms). %K A385899 sign,tabl %O A385899 0,3 %A A385899 _Peter Luschny_, Aug 02 2025