cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A386792 Antihydra, a BB(6) Turing machine (values of a).

Original entry on oeis.org

8, 12, 18, 27, 40, 60, 90, 135, 202, 303, 454, 681, 1021, 1531, 2296, 3444, 5166, 7749, 11623, 17434, 26151, 39226, 58839, 88258, 132387, 198580, 297870, 446805, 670207, 1005310, 1507965, 2261947, 3392920, 5089380, 7634070, 11451105, 17176657, 25764985, 38647477
Offset: 0

Views

Author

Peter Luschny, Aug 02 2025

Keywords

Comments

Let f(a, b) = (3*a / 2, b + 2) if a is even, otherwise ((3*a - 1)/2, b - 1). The Busy Beaver challenge is to find natural numbers n and v, such that after n iterations, starting with f(8, 0), the result is (v, -1).
We consider the sequence to be defined for all values of n, regardless of whether 'b' ever takes the value -1 or not. The sequence records the values of 'a' in this iteration. See A385902 for the values of 'b'.

Crossrefs

Cf. A385902 (values of b), A028444, A060843.

Programs

  • Maple
    aList := proc(halt) a := 8; u := 0; H := 8;
    from 0 to halt do
        q, r := iquo(a, 2), irem(a, 2):
        a, u := a + q, u + r: H := H,a
    od: H end: aList(37);
  • Mathematica
    A386792List[n_] := Module[{next},
        next[{a_, u_}] := {a, u} + QuotientRemainder[a, 2];
        NestList[next, {8, 0}, n][[All, 1]]];
    A386792List[38] (* Peter Luschny, Aug 05 2025 *)
  • Python
    def A386792List(n) -> list[int]:
        (a, b), H = (8, 0), [8]
        for _ in range(n):
            a, b = map(sum, zip((a, b), divmod(a, 2)))
            H.append(a)
        return H
Showing 1-1 of 1 results.